Newton Programmer’s
Reference

For Newton 2.0

'l Apple Computer, Inc.

© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software and any documentation
provided on CD-ROM. The same
proprietary and copyright notices
must be affixed to any permitted
copies as were affixed to the
original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language
or format. You may use the
software on any computer owned
by you, but extra copies cannot be
made for this purpose.

Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, Espy,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
Newton Connection Kit, and New
York are trademarks of Apple
Computer, Inc,, registered in the
United States and other countries.

Apple Press, the Apple Press
Signature, eWorld, Geneva,
NewtonScript, Newton Toolkit,
and QuickDraw are trademarks of
Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.

CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.

Helvetica and Palatino are
registered trademarks of Linotype
Company.

ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS1S,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Preface

Table of Contents

Figures and Tables ~ xxv

About This Book Xxxiii

Chapter 1

Audience xxxiii
Related Books XXXIV
Sample Code XXXiv
Conventions Used in This Book xxxv
Special Fonts XXXV
Tap Versus Click ~ xxxvi
Frame Code XXXVi
Developer Products and Support xxxvii
Undocumented System Software Objects

Getting Started Reference 11

Chapter 2

View Classes and Protos 1-1
clView 1-1
protoApp 1-2
Functions 1-4
Application-Defined Functions 1-4

Views Reference 21

Constants 2-1
View Class Constants 2-2
viewFlags Constants 2-4
view]Justify Constants 2-6
viewFormat Constants 2-11

iii

viewTransferMode Constants 2-13
viewEffect Constants 2-14
Functions and Methods ~ 2-18
Getting References to Views 2-18
Displaying, Hiding, and Redrawing Views 2-20
Dynamically Adding Views 2-27
Making Modal Views 2-31
Setting the Bounds of Views ~ 2-34
Animating Views 2-38
Dragging a View 2-45
Dragging and Dropping a Item 2-46
Scrolling View Contents 2-48
Working With View Highlighting ~ 2-52
Creating View Dependencies 2-55
Synchronizing Views 2-57
Laying Out Multiple Child Views 2-59
Miscellaneous View Operations 2-63
Application-Defined Methods ~ 2-65
View Warning Messages 2-86

Chapter 3 NewtApp Reference 31

Required Code 3-1
Required InstallScript and RemoveScript Functions
General Application Protos 3-2
newtSoup 3-2
newtApplication 3-8
NewtApplication Stationary Methods 3-15
NewtApplication Filing Methods 3-16
newtApplication Find Methods 3-18
newtApplication Delete and Duplicate Methods
NewtApplication Status Methods 3-22
newtInfoButton ~ 3-23
newtAboutView 3-24

iv

3-1

3-21

newtPrefsView 3-25
newtActionButton 3-26
newtFilingButton 3-26
newtAZTabs 3-27
newtFolderTab 3-28
newtClockFolderTab 3-28
newtStatusBarNoClose 3-29
newtStatusBar 3-30
newtFloatingBar 3-31
newtLayout 3-32
newtRollLayout 3-36
newtPageLayout 3-37
newtOverLayout 3-37
newtRollOverLayout 3-41
newtEntryView 3-42
newtFalseEntryView 3-44
newtRollEntry View 3-45
newtEntryPageHeader 3-46
newtEntryRollHeader 3-46
newtEntryViewActionButton 3-47
newtEntryViewFilingButton 3-47
newtInfoBox 3-47

Slot View Protos 3-49
newtROTextView 3-51
newtTextView 3-51
newtRONumView 3-52
newtNumView 3-52
newtROTextDateView 3-53
newtTextDateView 3-54
newtROTextTimeView 3-54
newtTextTimeView 3-55
newtROTextPhoneView 3-55
newtTextPhoneView 3-56
newtROEditView 3-56
newtEditView 3-57
newtCheckBox 3-58

Chapter 4

newtStationery View 3-59
newtEntryLockedlcon 3-59

Labelled Input-Line Slot View Protos 3-60
newtProtoLine 3-63
newtLabellnputLine 3-65
newtROLabellnputLine 3-67
newtROLabelNumlInputLine 3-67
newtLabelNumlInputLine 3-68
newtLabelDatelnputLine 3-69
newtROLabelDatelnputLine 3-71
newtLabelSimpleDateInputLine 3-71
newtNRLabelDateInputLine = 3-72
newtROLabelTimelnputLine 3-74
newtNRLabelTimelnputLine 3-74
newtLabelTimelnputLine 3-75
newtNRLabelDateNTimelnputLine 3-75
newtLabelPhonelnputLine 3-76
newtAreaCodeLine 3-77
newtAreaCodePhoneLine 3-77
newtSmartNameView 3-78

Stationery Reference 41

vi

Data Structure 4-1
viewDef Frame 4-1

Protos 4-3
newtStationery 4-3
newtStationeryPopupButton 4-6
newtNewStationeryButton 4-8
newtShowStationeryButton 4-9
newtRollShowStationeryButton ~ 4-11
newtEntryShowStationeryButton ~ 4-11

Functions 4-11

Chapter 5

Pickers, Pop-up Views, and
Overviews Reference 51

Data Structures 5-1
Name References 5-1

Column Specifications ~ 5-3

General Pickers 5-4

protoPopupButton 5-4
protoPopInPlace 5-6
protoLabelPicker 5-8
protoPicker 5-13
protoGeneralPopup 5-19
protoTextList 5-20
protoTable 5-24
protoTableDef 5-27
protoTableEntry 5-29

Map Pickers 5-30

protoCountryPicker ~ 5-30
protoProvincePicker ~ 5-31
protoStatePicker 5-32
protoWorldPicker 5-34

Text Pickers 5-35

protoTextPicker 5-35
protoDateTextPicker 5-37
protoDateDurationTextPicker 5-40
protoRepeatDateDurationTextPicker
protoDateNTimeTextPicker 5-46
protoTimeTextPicker 5-49
protoDurationTextPicker 5-51
protoTimeDeltaTextPicker 5-53
protoMapTextPicker 5-54
protoCountryTextPicker 5-56
protoUSstatesTextPicker 5-56
protoCitiesTextPicker 5-58
protoLongLatTextPicker 5-61

5-43

vii

Date, Time, and Location Pop-up Views 5-63
protoDatePopup 5-63
protoDatePicker 5-64
protoDateNTimePopup 5-67
protoDatelntervalPopup 5-69
protoMultiDatePopup ~ 5-72
protoYearPopup 5-73
protoTimePopup 5-74
protoAnalogTimePopup 5-76
protoTimeDeltaPopup 5-78
protoTimelntervalPopup 5-79

Number Pickers 5-81
protoNumberPicker 5-81

Picture Picker 5-82
protoPictIndexer 5-82

Overview Protos 5-85
protoOverview 5-85
protoSoupOverview 5-90
protoListPicker ~ 5-93
protoNameRefDataDef 5-97
protoPeopleDataDef ~ 5-105
protoPeoplePicker 5-110
protoPeoplePopup 5-111

Roll Protos 5-112
protoRoll 5-112
protoRollBrowser 5-116
protoRollltem 5-119

View Classes 5-121
Outline View (clOutline) 5-121

Monthly Calendar View (cIMonthView) 5-123

Pop-up Functions and Methods 5-126

Name Reference Functions 5-129

viii

Chapter 6 Controls Reference 61

Scroller Protos 6-2
protoHorizontal2DScroller 6-2
protoLeftRightScroller ~ 6-5
protoUpDownScroller 6-5
protoHorizontalUpDownScroller 6-6

Button and Box Protos 6-6
protoTextButton 6-7
protoPictureButton 6-9
protolnfoButton ~ 6-10
protoOrientation 6-13
protoRadioCluster 6-14
protoRadioButton 6-16
protoPictRadioButton 6-18
protoCloseBox 6-20
protoLargeCloseBox 6-22
protoCheckbox 6-24
protoRCheckbox 6-26

Selection Tab Protos 6-28
protoAZTabs 6-28
protoAZVertTabs 6-29

Gauges and Slider Protos 6-30
clGaugeView 6-30
protoSlider 6-33
protoGauge 6-35
protoLabeledBatteryGauge 6-37

Time Protos 6-38
protoDigitalClock ~ 6-38
protoNewSetClock 6-40
protoSetClock 6-42
protoAMPMCluster 6-44

Special View Protos 6-45
protoDragger 6-45
protoDragNGo 6-47
protoDrawer 6-49

ix

protoFloater ~ 6-49
protoFloatNGo 6-51
protoGlance 6-52
protoStaticText 6-54
View Appearance Protos 6-55
protoBorder 6-56
protoDivider ~ 6-56
protoTitle 6-58
Status Bar Protos 6-59
protoStatus 6-59
protoStatusBar 6-60

Chapter 7 Text and Ink Input and Display Reference 71
Text Constants and Data Structures 7-1
Text Flags 7-2
Font Constants for Use in Frames 7-3
Font Family Constants 7-3
Font Face Constants 7-3
Font Constants for Packed Font Integer Specifications 7-4

Built-in Fonts 7-4
Font Family Constants 7-7
Font Face Constants for Packed Integer Font
Specifications 7-7
Keyboard Constants 7-8
Keyboard Registration Constants 7-8
Key Descriptor Constants 7-9
Keyboard Modifier Keys 7-11
Line Patterns 7-11
The Rich String Format ~ 7-12
Text Views and Protos 7-12
General Input View (clEditView) 7-12
Functions and Methods for Edit Views 7-14
Paragraph View (clParagraphView) 7-15

Input Line Protos 7-17
protolnputLine 7-17
protoRichInputLine 7-19
protoLabellnputLine 7-19
protoRichLabellnputLine 7-22
Text and Ink Display Functions and Methods ~ 7-22

Functions and Methods for Measuring Text Views 7-23

Functions and Methods for Determining View Ink
Types 7-25

Font Attribute Functions and Methods 7-26

Rich String Functions and Methods ~ 7-31

Functions and Methods for Accessing Ink in Views 7-34

Keyboards 7-35
Keyboard View (clKeyboardView) 7-35
Keyboard Protos 7-37
protoKeyboard 7-37
protoKeypad 7-38
protoKeyboardButton ~ 7-39
protoSmallKeyboardButton 7-40
protoAlphaKeyboard 7-40
protoNumericKeyboard 7-41
protoPhoneKeyboard =~ 7-41
protoDateKeyboard 7-41
Keyboard Functions and Methods ~ 7-42
Keyboard Registry Functions and Methods 7-44
Caret Insertion Writing Mode Functions and Methods
Insertion Caret Functions and Methods 7-48
Application-Defined Methods for Keyboards 7-50
Input Event Functions and Methods 7-51
Functions and Methods for Hit-Testing ~ 7-51
Functions and Methods for Handling Insertions ~ 7-52
The Insert Specification Frame 7-52
Functions and Methods for Handling Ink Words 7-54
Application-Defined Methods for Handling Ink in a
View 7-56

7-47

xi

Chapter 8 Recognition System Reference s-1

Recognition System Data Structures 8-1
System-Wide Settings ~ 8-2
View Flags for Recognition 8-6
System-Supplied Dictionaries 8-16
Recognition Configuration Frames 8-17
System-Supplied recConfig Frames 8-18
Data Structures Used in recConfig Frames 8-24
Stroke Bundle Data Structures 8-28
The Stroke Bundle Frame 8-28
Format Specification Values for Stroke Bundle
Functions 8-28
Stroke, Word, and Gesture Units 8-29
Point Arrays 8-30
CorrectInfo Frame 8-30
WordInfo Frame 8-30
WordInterp Frame 8-30
Recognition System Prototypes 8-31
protoRecToggle 8-31
protoRecConfig 8-36
protoCharEdit ~ 8-41
Application-Defined protoCharEdit View Methods
Application-Defined protoCharEdit Template
Methods 8-52
protoCorrectInfo ~ 8-53
protoWordInfo 8-60
protoWordInterp 8-63
Recognition Functions 8-64
Recognition Configuration Functions 8-65
Application-Defined Recognition Methods 8-66
Inker Functions 8-76
Stroke Unit Functions 8-78
Stroke Bundle Functions and Methods ~ 8-83
Deferred Recognition Functions 8-89
Dictionary Functions 8-91

xii

8-52

User Dictionary Functions and Methods 8-94
Auto-Add Dictionary Functions and Methods 8-97
User Configuration Functions 8-98

Chapter 9 Data Storage and Retrieval Reference 91

Data Structures 9-1
Soup Definition Frame 9-2
Single-Slot Index Specification Frame 9-5
Multiple-Slot Index Specification Frame 9-6
Tags Index Specification Frame 9-8
Query Specification Frame 9-9
Tags Query Specification Frame 9-13
Callback Functions for Soup Change Notification 9-14
Package Reference Information Frame 9-18
Data Storage Functions and Methods 9-19
Package Functions and Methods 9-19
Store Functions and Methods 9-28
Soup Functions and Methods 9-35
Soup Change Notification Functions ~ 9-54
Store Part Functions 9-56
Methods for Manipulating Tags 9-56
Query and Cursor Methods 9-60
Entry Functions 9-65
Entry Alias Functions 9-72
VBO Functions and Methods ~ 9-74
Mock Entry Functions 9-77
Developer-Defined Entry Handler Methods ~ 9-79

Chapter 10 Drawing and Graphics Reference 101

Data Structure 10-1
Style Frame 10-1

xiii

View Classes 10-3
Shape View (cIPolygonView) 10-4
Picture View (clPictureView) 10-4
Scaled View (cIRemoteView) 10-5

Graphics and Drawing Protos 10-5
protolmageView 10-6
protoThumbnail ~ 10-14
protoThumbnailFloater ~ 10-18

Functions and Methods ~ 10-18
Bitmap Functions 10-19
Hit-Testing Functions 10-24
Shape-Creation Functions ~ 10-26
Shape Operation Functions and Methods
Utility Functions 10-40

10-33

Chapter 11 Sound Reference 111
Sound Data Structures 11-1
Sound Frame 11-1
Sound Result Frame 11-3
Protos 11-3
protoSoundChannel 11-3
Functions and Methods 11-6
Sound Resources 11-10
Chapter 12 Filing Reference 121

Xiv

Target Information Frame 12-1

Filing Protos 12-2
protoFilingButton 12-2
protoNewFolderTab 12-4
protoClockFolderTab 12-7

System-Supplied Filing Methods ~ 12-11

Application-Defined Filing Methods ~ 12-16

Chapter 13 Find Reference 131
Finder Protos 13-1
ROM_SoupFinder 13-1
ROM_CompatibleFinder 13-7
System Functions and Methods 13-12
Application-Defined Methods ~ 13-14
Chapter 14 System Services Reference 141
Undo Reference 14-1
Idler Reference 14-3
Alerts and Alarms Reference 14-4
Alerts and Alarms Proto 14-5
protoPeriodicAlarmEditor 14-5
Alerts and Alarm Functions 14-7
Progress-Reporting Reference 14-12
Progress-Reporting Proto 14-13
protoStatusTemplate 14-13
Progress-Reporting Functions 14-25
Power Registry Reference 14-31
Chapter 15 Intelligent Assistant Reference 151

Data Structures 15-1
Task Frame 15-1
Action Template 15-3
Target Template 15-7
Task Template 15-11
Developer-Supplied Task Template 15-12
Help Topic Slot 15-12
Assistant Functions and Methods 15-13
Developer-Supplied Assistant Functions and Methods

15-14

XV

Built-in Applications and System
Chapter 16 Data Reference 161

Names Reference 16-1
Names Constants 16-1
Names Data Structures 16-2
Names Data Definition Frame 16-2
Names View Definition Frame 16-3
Names Protos 16-4
protoPersonaPopup 16-4
protoEmporiumPopup 16-5
Names Functions and Methods 16-5
Names Soup Format 16-15
Person Entries 16-15
Owner Entries 16-18
Group Entries 16-20
Company Entries 16-21
Worksite Entries 16-22
Dates Reference 16-23
Dates Variables and Constants 16-24
Dates Protos 16-26
protoRepeatPicker 16-27
protoRepeatView 16-28
Dates Methods and Functions 16-30
Dates Soup Formats 16-56
Meeting Frames 16-57
Notes Frames 16-62
Dates Error Codes 16-63
To Do List Reference 16-69
To Do List Methods 16-69
To Do List Soup Format 16-77
Time Zones Reference 16-78
Time Zones Functions and Methods 16-79
Notes Reference 16-81
Notes Methods 16-81
Notes Soup Format 16-82

xvi

Icons and the Extras Drawer Reference 16-85
Extras Drawer Data Constants 16-85
Extras Drawer Data Structure 16-85

The Soupervisor Frame 16-86
Extras Drawer Methods 16-88

Fax Soup Entries Reference 16-94
Body Slot of Fax Soup Entries 16-94

Prefs and Formulas Rolls Reference 16-96
Proto 16-96

protoPrefsRollltem 16-96
Prefs and Formulas Functions 16-96

Auxiliary Button Reference 16-99
Auxiliary Buttons Functions and Methods 16-99

System Data Reference 16-101
User Configuration Variables 16-101
System Data and Utility Functions 16-107

Localizing Newton Applications
Chapter 17 Reference 171

Constants and Data Structures 17-1
Contents of a Locale Bundle 17-1
String Slots 17-2
Other Slots in Locale Bundles 17-10
Date and Time Format Specifications 17-11
System-Defined Format Specifications 17-11
Constants to Create Your Own Specification 17-13
Localization Function Reference 17-16
Compile-Time Functions 17-16
Locale Functions 17-18
Date and Time Functions 17-20
System Clock Functions 17-20
Formatted Date/Time Functions 17-22
Date Frame Functions 17-27
Utility Functions 17-28

xvii

Chapter 18 Routing Interface Reference 181

Data Structures 18-1
Item Frame 18-1
RouteScripts Array 18-6
Protos 18-7
protoActionButton 18-7
protoPrinterChooserButton 18-8
Routing Format Protos 18-9
Functions and Methods ~ 18-19
Send-Related Functions and Methods 18-19
Cursor-Related Functions 18-24
Utility Functions and Methods ~ 18-26
Application-Defined Methods 18-32

Chapter 19 Transport Interface Reference 19-1

Constants 19-1
Icon Constants 19-1

Protos 19-2
protoTransport 19-2
protoTransportHeader 19-37
protoFullRouteSlip 19-38
protoAddressPicker 19-43
protoTransportPrefs 19-44

Functions and Methods ~ 19-48
Utility Functions 19-48

Chapter 20 Endpoint Interface Reference 20-1

Constants and Symbols 20-1
Data Form Symbols 20-1
Data Type Symbols 20-2
Option Opcode Constants 20-3

xviii

Chapter 21

Endpoint Error Code Constants 20-4
Option Error Code Constants 20-5
Endpoint State Constants 20-6
Other Endpoint Constants ~ 20-6

Data Structures 20-7

Endpoint Option Frame 20-7
Callback Spec Frame 20-9

Output Spec Frame 20-10

Input Spec Frame 20-11

Input Spec Target Frame 20-15
Input Spec Termination Frame 20-16
Input Spec Filter Frame 20-17

Protos 20-18

protoBasicEndpoint 20-18
protoStreamingEndpoint 20-29

Functions and Methods 20-32

Utility Functions 20-32

Built-in Communications Tools Reference

21-1

Options for the Standard Asynchronous Serial Tool

Serial Chip Location Option ~ 21-4

Serial Chip Specification Option ~ 21-6
Serial Circuit Control Option 21-10
Serial Buffer Size Option ~ 21-13

Serial Configuration Option ~ 21-14
Serial Data Rate Option ~ 21-17

Serial Flow Control Options ~ 21-18
Serial Send Break Option ~ 21-20

Serial Discard Data Option 21-20

Serial Event Configuration Option ~ 21-21
Serial Bytes Available Option =~ 21-24
Serial Statistics Option 21-24

Serial External Clock Divide Option ~ 21-26

xix

XX

Options for the Serial Tool with MNP Compression
Serial MNP Data Rate Option ~ 21-28

21-27

Options for the Framed Asynchronous Serial Tool =~ 21-29

Serial Framing Configuration Option 21-29
Serial Framing Statistics Option ~ 21-31
Options for the Modem Tool ~ 21-31
Modem Address Option ~ 21-33
Modem Preferences Option =~ 21-34
Modem Profile Option ~ 21-38
Modem Error Control Type Option 21-45
Modem Dialing Option ~ 21-47
Modem Connection Type Option ~ 21-51
Modem Connection Speed Option ~ 21-53
Modem Fax Capabilities Option ~ 21-53
Modem Fax Enabled Capabilities Option ~ 21-56
Modem Voice Support Option 21-58
MNP Speed Negotiation Option ~ 21-59
MNP Compression Option ~ 21-61
MNP Data Statistics Option 21-62
Options for the Infrared Tool 21-65
Infrared Connection Option 21-66
Infrared Protocol Type Option 21-67
Infrared Statistics Option ~ 21-69
Options for the AppleTalk Tool — 21-71
AppleTalk Address Option ~ 21-72
AppleTalk Buffer Size Option 21-73
AppleTalk Bytes Available Option 21-74
AppleTalk Tool Type Option 21-75
AppleTalk Endpoint Name Option ~ 21-76
AppleTalk Functions 21-76
AppleTalk Driver Functions 21-77
Functions for Obtaining AppleTalk Zone Information
NetChooser Methods ~ 21-81
Options for Resource Arbitration 21-82
Passive Claim Option ~ 21-83
Passive State Option 21-84

21-78

Chapter 22

Modem Setup Service Reference 221

Chapter 23

Modem Setup General Information Constants 22-2
Modem Setup Preference Constants 22-3
Modem Setup Profile Constants 22-4
The No Error Control Configuration String 22-7
The Error Control Configuration String 22-8
The Error Control with Fallback Configuration String
The Direct Connect Configuration String ~ 22-9
Fax Profile Constants 22-10

Utility Functions Reference 231

22-9

Object System Functions 23-2
String Functions 23-13
Bitwise Functions 23-29
Array Functions 23-31
Sorted Array Functions 23-43
Integer Math Functions ~ 23-53
Floating Point Math Functions ~ 23-56
Managing the Floating Point Environment 23-73
Financial Functions 23-77
Exception Functions 23-80
Message-Sending Functions =~ 23-83
Deferred Message Sending Functions 23-87
Data Extraction Functions 23-92
Data Stuffing Functions 23-96
Getting and Setting Global Variables and Functions
Debugging Functions 23-104
Miscellaneous Functions 23-109

23-101

xxi

Appendix Error Codes a1

System Exceptions ~ A-1

System Errors A-2
Common Errors A-2
Application Errors A-2
1/0O Box Errors A-3
View System Errors A-3
State Machine Errors A-4
Operating System Errors A-4
Stack Errors A-7
Package Errors A-8

Newton Hardware Errors A-8
PCMCIA Card Errors A-8
Flash Card Errors A-10
Card Store Errors A-10
DMA Errors A-11
Heap Errors A-12

Communications Errors A-12
Generic AppleTalk Errors A-12
LAP Protocol Errors A-13
DDP Protocol Errors A-13
NBP Protocol Errors A-14
AEP Protocol Errors A-15
RTMP Protocol Errors A-15
ATP Protocol Errors A-15
PAP Protocol Errors A-16
ZIP Protocol Errors A-17
ADSP Protocol Errors A-17
Utility Class Errors A-17
Communications Tool Errors A-18
Serial Tool Errors A-19
MNP Tool Errors A-20
FAX Tool Errors A-20
Modem Tool Errors A-21
Communications Manager Errors A-21

xxii

Docker Errors A-22

Docker Import and Export Errors A-24

Docker Disk Errors A-24

Docker Desktop DIL Errors A-25
System Services Errors A-25

Sound Errors A-25

Compression Errors A-26

Memory Errors A-27

Communications Transport Errors A-28

Sharp IR Errors ~ A-28

Online Service Errors A-29

Printing Errors A-29

Newton Connection Errors A-30
NewtonScript Environment Errors A-30

Store and Soup Errors A-30

Object System Errors A-32

Bad Type Errors A-33

Compiler Errors A-34

Interpreter Errors A-35

Communications Endpoint Errors A-35
Device Driver Errors A-37

Tablet Driver Errors A-37

Battery Driver Errors A-37
Other Services Errors ~ A-38

Alien Store Errors A-38

Index IN-1

xxiii

Chapter 2

Chapter 3

Figures and Tables

Views Reference 2-1

Figure 2-1 Set Ori gi n example 2-49

Figure 2-2 Layout Tabl e results 2-60

Table 2-1 View class constants 2-2

Table 2-2 vi ewFl ags constants 2-4

Table 2-3 vi ewJust i fy constants 2-6

Table 2-4 Vi ewFor mat constants 2-11

Table 2-5 vi ewTr ansf er Mode constants 2-13
Table 2-6 Vi ewkf f ect constants 2-14

Table 2-7 View warning messages 2-86

NewtApp Reference 3-1

Figure 3-1 The Information button and picker 3-23
Figure 3-2 The NewtApp About view 3-25

Figure 3-3 A NewtApp Preferences view 3-26
Figure 3-4 The Action button 3-26

Figure 3-5 The Filing button 3-27

Figure 3-6 NewtApp A-Z tabs 3-27

Figure 3-7 The plain folder tab 3-28

Figure 3-8 The digital clock and folder tab 3-28
Figure 3-9 A status bar view 3-30

Figure 3-10 A floating bar view 3-31

Figure 3-11 A page header 3-46

Figure 3-12 A roll header 3-47

Figure 3-13 A NewtApp Information slip 3-48
Figure 3-14 A newtEditView proto 3-57

Figure 3-15 A NewtApp label input line 3-66

Figure 3-16 A NewtApp label display line for text 3-68
Figure 3-17 A NewtApp label number input line 3-68
Figure 3-18 A NewtApp label date input line 3-70

XXV

Figure 3-19 A newt ROLabel Dat el nput Li ne proto 3-71

Figure 3-20 The simple date input line 3-72

Figure 3-21 Date input with picker-only access 3-73

Figure 3-22 Time input with picker-only access 3-74

Figure 3-23 A newt Label Ti nel nput Li ne proto 3-75

Table 3-1 The NewtApp filters used to set the f | avor
slot 3-60

Chapter 4 Stationery Reference 4-1

Figure 4-1 Calls application menu bar 4-9

Figure 4-2 newt NewSt at i oner yBut t on in Names 4-9

Figure 4-3 newtShowStationeryButton 4-10

Chapter 5 Pickers, Pop-up Views, and Overviews Reference 5-1

Figure 5-1 Pop-up button and picker 5-4

Figure 5-2 A protoPopInPlace text button 5-6

Figure 5-3 A ProtoLabelPicker 5-8

Figure 5-4 Selection of items to choose 5-14

Figure 5-5 Example of a pop-up view with a close box 5-19

Figure 5-6 Scrollable list of items 5-21

Figure 5-7 Scrollable list of shapes and text 5-21

Figure 5-8 One-column table of text 5-24

Figure 5-9 Example of a country picker 5-30

Figure 5-10 Example of a province picker 5-31

Figure 5-11 Example of a state picker 5-33

Figure 5-12 Example of a world picker 5-34

Figure 5-13 Example of a text picker 5-36

Figure 5-14 Example of a date text pop-up view 5-38

Figure 5-15 Example of date picker before and after it is
tapped 5-41

Figure 5-16 Example label picker with text representation 5-44

Figure 5-17 Example of a date and time pop-up view 5-47

Figure 5-18 Example of a label picker with a text representation of
atime 5-49

Xxvi

Chapter 7

Figure 5-19
Figure 5-20

Figure 5-21
Figure 5-22

Figure 5-23
Figure 5-24

Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29
Figure 5-30
Figure 5-31
Figure 5-32
Figure 5-33
Figure 5-34
Figure 5-35
Figure 5-36
Figure 5-37
Figure 5-38
Figure 5-39
Figure 5-40

Figure 5-41
Figure 5-42

Figure 5-43
Figure 5-44

Example label picker with a text representation of a
time range 5-51

Example of a label picker with a text representation of
a time delta 5-53

Example of a map text label picker 5-55

Example of a label picker with a text representation of
a U.S. state 5-57

Example of a city picker 5-59

Example of a text representation of longitude and
latitude values 5-61

Example of a single date selection 5-63
Example of a date picker 5-65

Example of a pop-up menu 5-66

Example of a single date and time selection 5-68
Example of a date interval pop-up view 5-70
Example of a multidate pop-up view 5-72
Example of a year pop-up view 5-73
Example of a time pop-up view 5-75
Example of an analog time pop-up view 5-76
Example of a time delta pop-up view 5-78
Example of a time interval pop-up view 5-79
Example of a number picker 5-81

Example of an indexed array of pictures 5-83
Example of an overview list 5-86

Example of a soup entry proto 5-91

A protoLi st Pi cker based on
pr ot oPeopl eDat aDef 5-106

Example of a rolled list of items 5-113

Example of a collapsed and expanded rolled list
of items 5-117

Example of an expandable text outline 5-121
Monthly calendar view 5-124

Text and Ink Input and Display Reference 7-1

Table 7-1
Table 7-2

CopyPr ot ect i on constants 7-17
Valid items in an insert specification 7-53

XXvii

Chapter 8

Chapter 9

Chapter 10

Chapter 12

Xxviii

Recognition System Reference 8-1

Figure 8-1 Single-character editing box specified by
r cBasel nf o frame 8-25

Figure 8-2 Two-dimensional array of input boxes specified by
rcaidl nfo frame 8-27

Figure 8-3 pr ot oRecToggl e picker collapsed and
expanded 8-32

Figure 8-4 Typical pr ot oChar Edi t comb view and text

to correct 8-41

Table 8-1 View flags for text recognition using enumerated
dictionaries 8-7

Table 8-2 View flags for text recognition using lexical
dictionaries 8-10

Table 8-3 Nontext view flags 8-11

Table 8-4 System-supplied enumerated dictionaries 8-16

Table 8-5 System-supplied lexical dictionaries 8-17

Table 8-6 Stroke bundle data format specifications 8-29

Data Storage and Retrieval Reference 9-1

Table 9-1 Change messages and associated change
data 9-15

Drawing and Graphics Reference 10-1

Figure 10-1 pr ot ol nageVi ew Structure 10-6
Figure 10-2 Angles for arcs and wedges 10-29
Figure 10-3 Row width of picture bitmap 10-43

Filing Reference 12-1

Figure 12-1 Two examples of filing button views 12-2
Figure 12-2 The Filing slip 12-3
Figure 12-3 A pr ot oNewFol der Tab view with optional

title text 12-5

Figure 12-4 The picker displayed by a pr ot oNewFol der Tab

view 12-6
Figure 12-5 The pr ot oCl ockFol der Tab view 12-8
Figure 12-6 Selecting a filing category and store in a

pr ot oCl ockFol der Tab view 12-9

Chapter 14 System Services Reference 14-1

Figure 14-1 Status view components 14-14

Figure 14-2 Built-in status view configurations 14-20

Table 14-1 Status view components 14-15

Table 14-2 Internally defined vi ewBounds and vi ewJustify
slots 14-18

Table 14-3 Values for what parameter to RegPower O f
function 14-34

Table 14-4 Values for why parameter to RegPower O f
function 14-35

Table 14-5 Values for why parameter to RegPower On

function 14-37

Chapter 16 Built-in Applications and System Data Reference 16-1
Table 16-1 Names card layouts 16-2
Table 16-2 Dates variables 16-24
Table 16-3 Dates constants for the day of the week 16-24
Table 16-4 Dates constants for r epeat Type 16-25
Table 16-5 Other date constants 16-25
Table 16-6 Dates constants for the weeks in a month 16-26
Table 16-7 Compatible icon and meeting/event types 16-26
Table 16-8 Folder symbols 16-85

Chapter 17 Localizing Newton Applications Reference 17-1
Table 17-1 LongDat eFor nat slots 17-4
Table 17-2 Shor t Dat eFor nat slots 17-6
Table 17-3 TimeFormat Slots 17-7
Table 17-4 NumberFormat Slots 17-9

xxix

Table 17-5 Format specifications in ROM dat eTi neSt r Specs

global 17-12
Table 17-6 Elements of date strings 17-13
Table 17-7 Formats for date and time string elements 17-15
Table 17-8 Date frame slots and values 17-27
Table 17-9 ROM language codes 17-30
Chapter 19 Transport Interface Reference 19-1
Table 19-1 Preferences slots 19-7
Table 19-2 E-mail address translations 19-30
Table 19-3 Causes of a send request 19-33
Table 19-4 Slots in si | ent Pref s frame 19-46
Table 19-5 Slots in sendPr ef s frame 19-46
Table 19-6 Slots in out boxPr ef s frame 19-47
Table 19-7 Slots ini nboxPr ef s frame 19-47
Chapter 20 Endpoint Interface Reference 20-1
Table 20-1 Data form symbols 20-2
Table 20-2 Typel i st data type symbols 20-3
Table 20-3 Option opcode constants 20-3
Table 20-4 Endpoint error code constants 20-4
Table 20-5 Option error code constants 20-5
Table 20-6 Endpoint state constants 20-6
Table 20-7 Other endpoint constants 20-7
Table 20-8 Data translators 20-34
Chapter 21 Built-in Communications Tools Reference 21-1
Table 21-1 Built-in communications tool service option
labels 21-2
Table 21-2 Summary of serial options 21-3
Table 21-3 Serial chip location labels 21-5
Table 21-4 Serial chip specification option fields 21-8
Table 21-5 Serial chip specification option constants 21-9
Table 21-6 Serial circuit control option fields 21-11

XXX

Chapter 22

Table 21-7

Table 21-8

Table 21-9

Table 21-10
Table 21-11
Table 21-12
Table 21-13
Table 21-14
Table 21-15
Table 21-16
Table 21-17
Table 21-18
Table 21-19
Table 21-20
Table 21-21
Table 21-22
Table 21-23
Table 21-24
Table 21-25
Table 21-26
Table 21-27
Table 21-28

Serial circuit control option constants 21-12
Serial flow control option fields 21-19

Serial event constants 21-23

Serial statistics option fields 21-25

Summary of serial tool with MNP options 21-28
Summary of framed serial options 21-29
Serial framing configuration option fields 21-30
Summary of modem options 21-32

Modem preferences option fields 21-36
Modem profile option fields 21-41

Modem profile configuration strings 21-43
Modem error control type 21-46

Modem dialing option fields 21-49

Modem connection type option fields 21-52
Modem fax capabilities option fields 21-55
Modem fax modulation return values 21-56
MNP compression type 21-62

MNP data statistics option fields 21-64
Summary of infrared options 21-66

Infrared statistics option fields 21-70
Summary of AppleTalk options 21-71
Summary of resource arbitration options 21-83

Modem Setup Service Reference 22-1

Table 22-1

Table 22-2
Table 22-3
Table 22-4
Table 22-5
Table 22-6

Constants for modem setup general
information 22-2

Constants for modem setup preferences 22-3
Constants for the modem setup profile 22-5
Constants for the fax profile 22-10

Available fax speeds 22-11

Available fax service classes 22-12

xxxi

Chapter 23 Utility Functions Reference 23-1

Table 23-1 Instruction symbols for St ri ngFi | t er 23-23
Table 23-2 Floating point exceptions 23-73
Table 23-3 Exception frame data slot name and

contents 23-81

xxxii

PRETFAUCE

About This Book

Audience

This book, Newton Programmer’s Reference, is the definitive
reference for Newton programming. It describes all of the protos,
methods, functions, data structures, error codes, and other
constructs that are part of the Newton application programming
interface (API).

This book is a companion to Newton Programmer’s Guide, which
provides conceptual information and instructions for using the
Newton application programming interfaces.

This reference is for anyone who wants to write NewtonScript
programs for the Newton family of products.

Before using this reference, you should read Newton Toolkit User’s
Guide to learn how to install and use Newton Toolkit, which is the
development environment for writing NewtonScript programs for
Newton. You may also want to read The NewtonScript
Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is
used throughout the Newton Programmer’s Guide.

To make best use of this reference, you should already have a
good understanding of the information presented in the
companion volume to this book, Newton Programmer’s Guide.

xxxiii

Related Books

PRETFAUCE

Sample Code

This book is one in a set of books available for Newton
programmers. You'll also need to refer to these other books in
the set:

Newton Programmer’s Guide. This companion volume is the
definitive guide to Newton programming.

Newton Toolkit User’s Guide. This book comes with the Newton
Toolkit development environment. It introduces the Newton
development environment and shows how to develop Newton
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

The NewtonScript Programming Language. This book comes with
the Newton Toolkit development environment. It describes the
NewtonScript programming language.

Newton Book Maker User’s Guide. This book comes with the
Newton Toolkit development environment. It describes how to
use Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.

Newton 2.0 User Interface Guidelines. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

XXxiv

The Newton Toolkit development environment, from Apple
Computer, includes many sample code projects. You can examine
these samples, learn from them, and experiment with them. These
sample code projects illustrate most of the topics covered in this
book. They are an invaluable resource for understanding the

PRETFAUCE

topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. The
latest sample code is included each quarter on the Newton
Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly
mailing. Sample code is updated on the Newton Development
side on the World Wide Web (htt p: // dev. i nf 0. appl e. com
newt on) shortly after it is released on the Newton Developer CD.
For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section “Developer
Products and Support,” on page xxxvii.

The code samples in this book show methods of using various
routines and illustrate techniques for accomplishing particular
tasks. All code samples have been compiled and, in most cases,
tested. However, Apple Computer does not intend that you use
these code samples in your application.

To make the code samples in this book more readable, only
limited error handling is shown. You need to develop your own
techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts

This book uses the following special fonts:

= Boldface. Key terms and concepts appear in boldface on first
use. These terms are also defined in the Glossary.

XXXV

XXXVi

PRETFAUCE

= Courier typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Courier typeface to distinguish
them from regular body text. If you are programming, items
that appear in Courier should be typed exactly as shown.

= |talic typeface. Italic typeface is used in code to indicate
replaceable items, such as the names of function parameters,
which you must replace with your own names. The names of
other books are also shown in italic type, and rarely, this style is
used for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the
word “click” sometimes appears as part of the name of a method
or variable, asin Vi ewC i ckScri pt or ButtonC i ckScri pt.
This may lead you to believe that the text refers to mouse clicks. It
does not. Wherever you see the word “click” used this way, it
refers to a tap of the pen on the Newton screen (which is
somewhat similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development
environment in conjunction with this book, you may notice that
this book displays the code for a frame (such as a view) differently
than NTK does.

In NTK, you can see the code for only a single frame slot at a time.
In this book, the code for a frame is presented all at once, so you
can see all of the slots in the frame, like this:

{ viewd ass: clView,
vi ewBounds: Rel Bounds(20, 50, 94, 142),
vi ewFl ags: vNoFI ags,

PRETFAUCE

vi ewFormat: vfFillWhite+vfFraneBl ack+vfPen(1),
vi ewdustify: vjCenterH,

Vi ewSet upDoneScri pt: func()
: Updat eDi spl ay(),

Updat eDi spl ay: func()
Set Val ue(di spl ay, 'text, value);
b

If while working in NTK, you want to create a frame that you see
in the book, follow these steps:

1. On the NTK template palette, find the view class or proto
shown in the book. Draw out a view using that template. If the
frame shown in the book contains a _pr ot o slot, use the
corresponding proto from the NTK template palette. If the
frame shown in the book contains a vi ewCl ass slot instead of
a_pr ot o slot, use the corresponding view class from the NTK
template palette.

2. Edit the vi ewBounds slot to match the values shown in the
book.

3. Add each of the other slots you see listed in the frame, setting
their values to the values shown in the book. Slots that have
values are attribute slots, and those that contain functions are
method slots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s
worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone
interested in developing applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring
all current versions of Apple development tools and the most

xXxxvii

PRETFAUCE

popular third-party development tools. ADC offers convenient
payment and shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple
Developer Catalog contact

Apple Developer Catalog

Apple Computer, Inc.

P.O. Box 319

Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

World Wide Web http:/ /www.devcatalog.apple.com

If you provide commercial products and services, call
408-974-4897 for information on the developer support programs
available from Apple.

For Newton-specific information, see the Newton developer
World Wide Web page at:

http://dev.info.apple.com newton

Undocumented System Software Objects

xxxviii

When browsing in the NTK Inspector window, you may see
functions, methods, and data objects that are not documented in
this book. Undocumented functions, methods, and data objects
are not supported, nor are they guaranteed to work in future
Newton devices. Using them may produce undesirable effects on
current and future Newton devices.

CHAPTER 1

Getting Started Reference

This chapter describes the view classes, protos, and functions useful for
creating any application.

View Classes and Protos

clView

The cl Vi ewview class is the base view class. It implements a generic view
that has no special characteristics or specific kind of data associated with it.
This view class does not support recognition, gestures, or user input of any
kind.

When a cl Vi ewis used as the base view of an application, it typically
includes many application-specific slots containing global data and methods
for use by its child views (which automatically inherit parental slots if they
are not overridden). The minimal slots of interest are listed below.

View Classes and Protos 1-1

1-2

CHAPTER 1

Getting Started Reference

Slot descriptions

vi ewBounds Set to the size and location where you want the view to
appear.

vi ewFl ags The default setting is vVi si bl e.

vi ewFor mat Optional. The default setting is ni | .

Here is an example of a template defining a view of the cl Vi ewclass:

sanpl eApp :={...

vi ewCl ass: cl Vi ew,

vi ewBounds: {left:0, top:0, right:200, bottom 200},
vi ewFl ags: vApplication+vd i ckabl e,

vi ewFor mat : vf FrameBl ack+vf Penl+vf Shadowl,

vi ewdustify: vjParent CenterH,

vi ewef fect: fxUp+fxSteps(8),
decl areSel f: 'base, // for closebox child

/1 methods and other viewspecific slots

Vi ewSet upFornScript: func()...
-}

protoApp

This proto is used to create a simple application base view. It is a view with a
title at the top and a status bar at the bottom. The user can tap on the clock

View Classes and Protos

CHAPTER 1

Getting Started Reference

icon to see the current time, or on the close box to close the application. Here

is an example:

My Application

©

£3)

Slot descriptions
title
vi ewBounds

Vi ewFl ags

vi ewdustify

View Classes and Protos

A string that is the title. This title appears in a title bar at
the top of the view.

Set to the size and location where you want the view to
appear. By default it is centered horizontally within its
parent view.

The default setting is vVi si bl e + vApplicati on.
Do not change these flags, but you can add others if you
wish.

Optional. The default setting is vj Par ent Cent er H.

CHAPTER 1

Getting Started Reference

vi ewFor mat Optional. The default setting isvf Fi | | White +
vf FrameBl ack + vfPen(1l) + vflnset(1) +
vf Shadow(1) .

decl areSel f Do not change. This slot is set by default to ' base. This
identifies the view to be closed when the user taps the
close box.

The pr ot 0App has two child views: a title and a status bar.

Here is an example of a template using pr ot 0App:

myApp = {...
_proto: protoApp,

title: "My Application",
/1l set bounds relative to screen size

Vi ewSet upFor nScri pt: func()
begi n
[ocal b := GetAppParans();
sel f.viewBounds.top := b.appAreaTop + 2;
sel f.viewBounds. |l eft := b.appArealLeft;
sel f.vi ewBounds. bottom : = b. appAreaHei ght - 7;
sel f.viewBounds.right := b.appAreaWdth - 21;
end

-}

Functions

Application-Defined Functions

This section describes functions that are called when applications and other
parts are installed and removed from the Newton device.

Functions

CHAPTER 1

Getting Started Reference

InstallScript

Install Scri pt (partFrame) // for application part
I nstal |l Scri pt (partFrame, removeFrame) // for auto part

This function in the application or auto part is executed when the package is
activated on the Newton or when the Newton is reset.

partFrame The part frame. For an application part, this frame
contains a slot named t heFor m which contains a
reference to your application’s base template. For an
auto part, there is no t heFor mslot.

removeFrame This parameter is passed to this function only if an auto
part is being installed, otherwise, only one parameter is
passed. The removeFrame parameter is the frame that
will be passed to the auto part RenpveScri pt
function. This frame contains a single slot,
RenoveScri pt, which contains a copy of the
RenpveScri pt function. Note that you can add
additional slots to this frame.

For application parts, the system executes a deep clone of the

I nstal | Scri pt function, so you don’t normally need to use

Ensur el nt er nal within it. It's recommended that you keep the

I nstal | Scri pt function as small as possible for application parts, because
the function is copied into the NewtonScript heap as a result of the deep
clone. If you need to execute a lot of code, you might want to make a method
in the application base template and send it a message from your

I nstal | Scri pt.You can access the base template using the expression
partFrame. t heFor m The code in the application method won’t be deep
cloned since it’s not part of the I nst al | Scri pt function.

For auto parts, the I nst al | Scri pt function is not cloned or copied. You
must use Ensur el nt er nal within this function as appropriate, to prevent
the warning to reinsert the card.

Functions 1-5

1-6

CHAPTER 1

Getting Started Reference

DeletionScript

Del etionScri pt ()

This function in the part is executed when the package is deleted by the user
from the Extras drawer. Typically this function is used to do clean-up
operations that you might need to do when the part is deleted.

This function applies to all types of package parts, except for store parts.

After the Del eti onScri pt function is executed, the RenoveScri pt
function is also executed (for application and auto parts only).

DoNotlInstallScript

DoNot I nstal | Scri pt ()

This function in the part is executed before the package is first loaded onto a
Newton store from some external source. It gives the parts in the package a
chance to prevent installation of the package. If any part returns a non-ni |
value from this function, the package is not installed.

You should provide the user with some kind of feedback if package
installation is prevented, rather than silently failing.

This function applies to all types of package parts, except for store parts.

RemoveScript

RenoveScri pt (frame)

This function in the application or auto part is executed when the package is
deactivated.

frame For an application part, this parameter is equivalent to
the part frame. Note that because the application has
been removed, the t heFor mslot contains an invalid
reference. For an auto part, this parameter is the same
removeFrame parameter passed to the I nstal | Scri pt
function. Note that the | nst al | Scri pt function can
add additional slots to this frame.

Functions

CHAPTER 1

Getting Started Reference

Note that the function that is executed is actually a clone of the
RenpveScri pt function in your part.

If the application or auto part package is deleted by the user from the Extras
drawer, the Del eti onScri pt function is executed before the
RenmoveScri pt function.

Functions 1-7

C

Views Reference

HAPTETR 2

This chapter describes the constants, functions, and methods used by the

view system interface.

Constants

The following sections contain descriptions of the constants used in the view
interface:

view class constants

vi ewFl ags constants

vi ewJusti f y constants

Vi ewFor mat constants

vi ewTr ansf er Mode constants

vi ewEf f ect constants

Constants

CHAPTER 2

Views Reference

View Class Constants

The view class constants are listed and described in Table 2-1.

Table 2-1 View class constants
Constant Value Description
cl Vi ew 74 The base view class. This class is used for

cl Pi ctureVi ew

cl Edi t Vi ew

cl Par agr aphVi ew

2-2 Constants

76

77

81

a generic view that has no special
characteristics. A view of this class is
generally a container view that encloses
other more specialized views. Such a
high-level view would include global
data and methods shared by its child
views. See Chapter 2, “Getting Started,”
in the Newton Programmer’s Guide for
more information.

Used for pictures. See Chapter 13,
“Drawing and Graphics,” in the Newton
Programmer’s Guide for more information.

Used for editing views that can accept
both text and graphic user input. This
view class typically has child views that
are of class cl Par agr aphVi ewand

cl Pol ygonVi ew. See Chapter 8, “Text
and Ink Input and Display,” in the
Newton Programmer’s Guide for more
information.

A static or editable text view. When text is
recognized, it is displayed in one of these
views. Text is grouped into paragraphs so
that many words can be shown in a single
paragraph view. See Chapter 8, “Text and
Ink Input and Display,” in the Newton
Programmer’s Guide for more information.

CHAPTER 2

Views Reference

Table 2-1 View class constants (continued)

Constant
cl Pol ygonVi ew

cl Keyboar dVi ew

cl Mont hVi ew

cl Renot eVi ew

cl Pi ckVi ew

Constants

Value
82

79

80

88

91

Description

A graphic view used in an edit view.
When a shape is recognized, it is
displayed in one of these graphic views.
See Chapter 13, “Drawing and Graphics,”
in the Newton Programmer’s Guide for
more information.

Used to define keyboard-like arrays of
buttons that can be tapped. No other
forms of input recognition are available.
See Chapter 8, “Text and Ink Input and
Display,” in the Newton Programmer’s
Guide for more information.

Used to define a calendar view of a
month that lets the user select a date
range. See Chapter 6, “Pickers, Pop-up
Views, and Overviews,” in the Newton
Programmer’s Guide for more information.

Used for a view that displays another
view as its contents. This can be used to
show a page preview of a full-page view,
for example. This view provides the
scaling necessary to display the entire
remote view. See Chapter 13, “Drawing
and Graphics,” in the Newton
Programmer’s Guide for more information.

Used to display a list from which you can
pick an item. The list can display both
text and graphic items. This view class is
supported through the pr ot oPi cker
view proto. See Chapter 6, “Pickers,
Pop-up Views, and Overviews,” in the
Newton Programmer’s Guide for more
information.

2-3

CHAPTER 2

Views Reference

Table 2-1 View class constants (continued)
Constant Value Description
cl GaugeVi ew 92 Used to define a gauge-like view that can

display a visual sliding bar indicator. The
view can be read-only or changeable.
With a changeable view, the user can drag
the indicator to a new position. See
Chapter 7, “Controls and Other Protos,”
in the Newton Programmer’s Guide for
more information.

clQutline 105 Used for a text outline with expandable
headings that have indented subheadings.
The user can tap headings to expand and
collapse them and to choose items. See
Chapter 7, “Controls and Other Protos,”
in the Newton Programmer’s Guide for more
information.

viewFlags Constants

The vi ewFl ags constants are listed and described in Table 2-2. Several
additional constants can be specified in the vi ewFl ags slot that control
what kinds of pen input (taps, strokes, words, letters, numbers, and so on)
are recognized and handled by the view. These other constants are described
in “Text and Ink Input and Display Reference” (page 7-1).

Table 2-2 vi ewFl ags constants
Constant Value Description
vVisible 1 The view is visible. (Don't set this flag for your

application base view, because you don’t want it
to be shown until the user taps its icon in the
Extras Drawer.) If you Show, Hide, Open, Close,
or Toggle a view, this flag is changed in the view
by the system to reflect the current state of the
view.

Constants

CHAPTER 2

Views Reference

Table 2-2 vi ewFl ags constants (continued)
Constant Value Description
vAppl i cation 4 Identifies a view that should receive scrolling and

vCal cul at eBounds 8

vCl i ppi ng 32
VvFl oati ng 64
vReadOnl y 2

vWiteProtected 128

Constants

other high-level events. For example, when the
user taps the scroll arrows, the system searches all
views to find the frontmost view that has this bit
set, and then sends the scroll event to that view.
Generally, this flag is set for the application base
view. Views with this flag set can be found with
the special view symbols ' vi ewFr ont Most or

' vi ewFr ont Most App.

The view bounds are not fixed, but are
recalculated and will grow if the user enters more
information than the view can hold. Used by
views of the class cl Par agr aphVi ewand

cl Pol ygonVi ewonly, and only when they are
enclosed in a view of the class cl Edi t Vi ew

The view’s contents, including child views, are
clipped to its bounds when it is drawn. Note that
the base view of all applications is automatically
clipped, whether or not this flag is set.

The view is a floating view; that is, it floats above
its non-vFl oat i ng sibling views. A view without
this flag will never come in front of a floating
sibling view.

The view cannot be changed, but it can be scaled
or distorted. It is read-only.

The same as vReadOnl y, except that this flag
propagates automatically to all of the view’s child
views. Additionally, scaling and distortion of the
view are not allowed.

2-5

CHAPTER 2

Views Reference

Table 2-2

vi ewFl ags constants (continued)

Constant
vNoScri pts

vC i ckabl e

vNoFI ags

Value
134217728

512

Description

Prevents the system from sending in the view any
of the system messages described

“ Application—-Defined Methods” (page 2-65)
(except for the Vi ewChangedScri pt, and

Vi ewSet upFor nScr i pt messages, which are
still sent). Setting this flag speeds up the
processing for a view if it has no application-
defined handling methods, because the system
won’t bother trying to send it messages. This flag
is set internally for views of the classes

cl Par agr aphVi ew cl Pi cut ur eVi ew and

cl Pol ygonVi ewthat are created dynamically as
the user writes in a cl Edi t Vi ew

Allows the view to receive pen input. The system
sends the Vi ewCl i ckScri pt message to the
view once for each pen tap (click) that occurs
within the view. See to “Text and Ink Input and
Display” (page 8-1) in the Newton Programmer’s
Guide for more information.

There are no flag attributes for the view.

viewJustify Constants

The constants used for the vi ewdust i f y slot are listed and described in

Table 2-3.

Table 2-3

vi ewJust i fy constants

Constant

Value

Horizontal alignment of view contents

vj LeftH
vj CenterH

2-6

Constants

0
2

Description

Left alignment (default).

Center alignment (default for cl Pi ct ur eVi ew
only).

CHAPTER 2

Views Reference

Table 2-3 vi ewdust i fy constants (continued)
Constant Value Description
vj Ri ghtH 1 Right alignment.
vj Ful I H 3 Stretches the view contents to fill the entire view

Vertical alignment of view contents®

vj TopV 0
vj CenterV 4
vj Bot t onVv 8
vj Ful I V 12

width.

Top alignment (default).

Center alignment (default for cl Pi ct ur eVi ew
only).

Bottom alignment.

For views of the cl Pi ct ur eVi ewclass only;
stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling view?

vj Parent LeftH 0
vj Parent Center H 16
vj Parent Ri ghtH 32
vj Parent Ful | H 48
vj Si bl i ngNoH 0

Constants

The left and right view bounds are relative to the
parent’s left side (default).

The difference between the left and right view
bounds is used as the width of the view. If you
specify zero for left, the view is centered in the
parent view. If you specify any other number for
left, the view is offset by that much from a centered
position (for example, specifying left = 10 and
right = width+10 offsets the view 10 pixels to the
right from a centered position).

The left and right view bounds are relative to the
parent’s right side, and will usually be negative.

The left bounds value is used as an offset from the
left edge of the parent and the right bounds value
as an offset from the right edge of the parent (for
example, specifying left = 10 and right = -10 leaves
a 10-pixel margin on each side).

(Default) Do not use sibling horizontal alignment.

2-7

CHAPTER 2

Views Reference

Table 2-3 vi ewJust i fy constants (continued)
Constant Value Description
vj Si bl i ngLeftH 2048 The left and right view bounds are relative to the
sibling’s left side.
vj Si bl i ngCent erH 512 The difference between the left and right view

bounds is used as the width of the view. If you
specify zero for left, the view is centered in relation
to the sibling view. If you specify any other number
for left, the view is offset by that much from a
centered position (for example, specifying left = 10
and right = width+10 offsets the view 10 pixels to
the right from a centered position).

vj Si bl i ngRi ghtH 1024 The left and right view bounds are relative to the
sibling’s right side.
vj SiblingFullH 1536 The left bounds value is used as an offset from the

left edge of the sibling and the right bounds value
as an offset from the right edge of the sibling (for
example, specifying left = 10 and right =-10
indents the view 10 pixels on each side relative to
its sibling).

Vertical alignment of the view relative to its parent or sibling view?

vj Par ent TopV 0 The top and bottom view bounds are relative to the
parent’s top side (default).

vj Parent Cent er V 64 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in the
parent view. If you specify any other number for
top, the view is offset by that much from a centered
position (for example, specifying top =-10 and
bottom = height-10 offsets the view 10 pixels above
a centered position).

vj Par ent Bot t onV 128 The top and bottom view bounds are relative to the
parent’s bottom side.

2-8 Constants

CHAPTER 2

Views Reference

Table 2-3 vi ewdust i fy constants (continued)
Constant Value Description
vj Parent Ful | V 192 The top bounds value is used as an offset from the

vj Si bl i ngNoV 0
vj Si bli ngTopV 16384

vj Si bl'i ngCenterV 4096

vj Si bl i ngBot t onVv 8192

vj Si bl i ngFul | V 12288
Text limits

noLineLimts 0

onelLi neOnl y 8388608
oneWwrdOnl y 16777216

Indicate that a bounds value is a ratio
vj NoRat i o 0

Constants

top edge of the parent and the bottom bounds
value as an offset from the bottom edge of the
parent (for example, specifying top = 10 and
bottom = 10 leaves a 10-pixel margin on both the
top and the bottom).

(Default) Do not use sibling vertical alignment.

The top and bottom view bounds are relative to the
sibling’s top side.

The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in relation
to the sibling view. If you specify any other number
for top, the view is offset by that much from a
centered position (for example, specifying top = -10
and bottom = height-10 offsets the view 10 pixels
above a centered position).

The top and bottom view bounds are relative to the
sibling’s bottom side.

The top bounds value is used as an offset from the
top edge of the sibling and the bottom bounds
value as an offset from the bottom edge of the
sibling (for example, specifying top = 10 and
bottom = 10 indents the view 10 pixels on both the
top and the bottom sides relative to its sibling).

(Default) No limits, text wraps to next line.
Allows only a single line of text, with no wrapping.

Allows only a single word. (If the user writes
another word, it replaces the first.)

(Default) Do not use proportional alignment.

2-9

CHAPTER 2

Views Reference

Table 2-3

vi ewJust i fy constants (continued)

Constant
vjLeftRatio

Vj Ri ght Rat i

vj TopRati o

vj Bot t onRat

vj Par ent Anc

o

io

hor ed

Value
67108864

134217728

268435456

-536870912

256

Description

The value of the slot vi ewBounds. | ef t is
interpreted as a percentage of the width of the
parent or sibling view to which this view is
horizontally justified.

The value of the slot vi ewBounds. ri ght is
interpreted as a percentage of the width of the
parent or sibling view to which this view is
horizontally justified.

The value of the slot vi ewBounds. t op is
interpreted as a percentage of the height of the
parent or sibling view to which this view is
vertically justified.

The value of the slot vi ewBounds. bot t omis
interpreted as a percentage of the height of the
parent or sibling view to which this view is
vertically justified.

The view is anchored at its location in its parent
view, even if the origin of the parent view is

changed. Other sibling views will be offset, but not

child views with this flag set.

For views of the cl Par agr aphVi ewclass, the vertical alignment constants vj TopV, vj Cent erV,
and vj Bot t onV apply only to paragraphs that also have the oneLi neOnl y vi ewdust i f y flag set.
If you are applying horizontal sibling-relative alignment and the view is the first child, it is positioned
according to the horizontal parent-relative alignment setting.

If you are applying vertical sibling-relative alignment and the view is the first child, it is positioned

according to the vertical parent-relative alignment setting.

2-10

Constants

CHAPTER 2

Views Reference

viewFormat Constants

The constants used for the vi ewFor mat slot are listed and described in

Table 2-4.

Table 2-4 vi ewFor mat constants
Constant Value Description
vf None 0 There are no format attributes set for the view

(default).
View fill color
viFillWite 1 Fill view with white.
viFillLtGay 2 Fill view with light gray.
viFill Gay 3 Fill view with gray.
viFill DkG ay 4 Fill view with dark gray.
viFill Bl ack 5 Fill view with black.
viFill Custom 14 Fill the view with the custom pattern specified in the
vi ewFi | | Pat t er n slot.

View frame color
vf FraneWi te 16 White frame.
vf FraneLt G ay 32 Light gray frame.
vf FranmeG ay 48 Gray frame.
vf FrameDkGr ay 64 Dark gray frame.
vf FranmeBl ack 80 Black frame.
vf FrameMatt e 240 Thick gray frame bordered by a black frame, giving a

Constants

matte effect.

2-11

CHAPTER 2

Views Reference

Table 2-4 vi ewFor mat constants (continued)

Constant Value
vf Fr aneDr agger 208

vf FranmeCust om 224

View frame thickness

vf Pen(pixels) pixels *
256

View frame roundedness

vf Round(pixels) pixels *
16777216

View frame inset

vfl nset (pixels) pixels *
65536

View shadow style

vf Shadow(pixels) pixels *
262144

Description

Similar effect to vf Fr aneMat t e, except that

vf Fr anmeDr agger includes a small control nub in the
top portion of the frame at the center. This nub
indicates that the user can tap there and drag the view
around.

Use the custom frame pattern specified in the
vi ewFr anePat t er n slot.

Sets the frame width; pixels specifies the pen thickness
in pixels, from 0 through 15. (Note that this is a
compile-time only function.)

Sets the corner radius for a rounded frame. pixels
specifies the corner radius in pixels, from 0 through
15. (Note that this is a compile-time only function.)

Sets the inset style for the frame; that is, the amount of
white space (in pixels) between the view bounds and
the frame. pixels specifies the inset, from 0 through 3.
(Note that this is a compile-time only function.)

Sets the shadow style for the view; pixels specifies the
thickness of the shadow in pixels that is shown on the
bottom and right sides of the view frame. Specify a
number from 0 through 3. (Note that this is a
compile-time only function.)

View line style (for cl Edi t Vi ewand cl Par agr aphVi ewview classes only)

vf Li nesWi te 4096

2-12 Constants

Draw horizontal lines in white.

CHAPTER 2

Views Reference

Table 2-4 vi ewFor mat constants (continued)
Constant Value Description
vf Li nesLt G ay 8192 Draw widely dotted horizontal lines.
vf Li nesG ay 12288 Draw dotted horizontal lines.
vf Li nesDkG ay 16384 Draw dashed horizontal lines.
vf Li nesBl ack 20480 Draw solid black horizontal lines.

vf Li nesCust om 57344

Use the custom line pattern specified in the
vi ewLi nePat t er n slot.

viewTransferMode Constants

The constants that you can specify for the vi ewTr ansf er Mode slot are
listed and described in Table 2-5.

Table 2-5 vi ewTr ansf er Mode constants
Constant Value Description
nodeCopy 0 Replaces the pixels in the destination with the

modeOr

nmodeXor

nmodeBi ¢

Constants

pixels in the source, “painting” over the screen
without regard for what’s already there.

Replaces screen pixels under the black part of
the source image with black pixels. Screen
pixels under the white part of the source image
are unchanged.

Inverts screen pixels under the black part of
the source image. Screen pixels under the
white part of the source image are unchanged.

Erases screen pixels under the black part of the
source image, making them all white. Screen
pixels under the white part of the source image
are unchanged.

2-13

CHAPTER 2

Views Reference

Table 2-5 vi ewTr ansf er Mode constants (continued)

Constant Value
nodeNot Copy 4

nodeNot O 5
nodeNot Xor 6
nodeNot Bi ¢ 7
nodeMask 8

viewEffect Constants

Description

Replaces screen pixels under the black part of
the source image with white pixels. Screen
pixels under the white part of the source image
are made black.

Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are made black.

Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are inverted.

Screen pixels under the black part of the source
image are unchanged. Screen pixels under the
white part of the source image are made white.

This is a special transfer mode used for
drawing views of the cl Pi ct ur eVi ewclass
only. It causes the picture mask image to be
erased first and then the picture bit image is
drawn over it using the nodeOr transfer mode.

Table 2-6 lists all of the constants that you can use in the vi ewEf f ect slot to
create custom animation effects.

Table 2-6 vi ewkf f ect constants

Constant
f xSt eps(x)

2-14

Integer Value

(x-1)*
2097152

Constants

Description

Sets the number of steps (x) that the animation
should take to complete. Specify an integer from 1
to 15.

CHAPT

ER 2

Views Reference

Table 2-6

vi ewEf f ect constants (continued)

Constant
f xSt epTi ne(x)

f xCol ums(x)

f XRows (x)

f xMoveH

f xHSt ar t Phase

f xCol Al t HPhase

f xRowAl t HPhase

f xMbveV

f xVSt ar t Phase

Integer Value
X*33554432

x-1

(x-1)*32

65536

1024

4096

16384

131072

2048

Constants

Description

Sets the amount of time (X) to take for each
animation step, in ticks. There are 60 ticks per
second, or 16.6 milliseconds per tick. Specify an
integer from 0 to 15.

Sets the number (x) of columns in which to divide
the view for animation purposes.

Sets the number (x) of rows in which to divide the
view for animation purposes.

Indicates that you want the animation to include
horizontal movement. (Note that you can also
specify f xMoveV)

If specified, indicates that you want the first
column to begin moving towards the left. If not
specified, the first column begins moving towards
the right. This flag can be used only if f xMoveHis
specified.

If specified, the direction of horizontal movement
alternates for each column in the view. If not
specified, all columns move in the same direction
(left or right) as the first column. This flag can be
used only if f xMoveHis specified.

If specified, the direction of horizontal movement
alternates for each row in the view. If not specified,
all rows move in the same direction (left or right)
as the first row. This flag can be used only if

f xMoveH s specified.

Indicates that you want the animation to include
vertical movement. (Note that you can also specify
f xMoveH.)

If specified, indicates that you want the first row to
begin moving upwards. If not specified, the first
row begins moving downwards. This flag can be
used only if f xMoveV is specified.

2-15

CHAPT

ER 2

Views Reference

Table 2-6

vi ewEf f ect constants (continued)

Constant
f xCol Al t VPhase

f xRowAl t VPhase

fxLeft

f xRi ght

fxUp

f xDown

f xReveal Li ne

f XW pe

Integer Value
8192

32768

66560

65536

133120

131072

262144

524288

2-16 Constants

Description

If specified, the direction of vertical movement
alternates for each column in the view. If not
specified, all columns move in the same direction
(up or down) as the first column. This flag can be
used only if f xMbveV is specified.

If specified, the direction of vertical movement
alternates for each row in the view. If not specified,
all rows move in the same direction (up or down)
as the first row. This flag can be used only if

f xMoveV is specified.

Indicates that motion should be towards the left.
(This flag is the same as specifying
f xHSt ar t Phase+f xMbveH.)

Indicates that motion should be towards the right.
(This flag is the same as specifying f xMoveHand
not specifying f xHSt ar t Phase.)

Indicates that motion should be towards the top.
(This flag is the same as specifying
f xVSt ar t Phase+f xMoveV.)

Indicates that motion should be towards the
bottom. (This flag is the same as specifying
f xMoveV and not specifying f xVSt ar t Phase.)

If specified, causes a line to be drawn at the
edge(s) from which the animation is being
revealed. For some types of animation, this setting
improves the effect.

If specified, causes the view to be revealed in place
rather than actually moved into place. In other
words, the view is revealed just like a window is
revealed by rolling a shade away. Without this
flag, the view is actually moved into place.

CHAPTER 2

Views Reference

Table 2-6 vi ewEf f ect constants (continued)

Constant Integer Value

f xFr onEdge 1048576

f xChecker boar dEf f ect
155879

f xBar nDoor QpenEf f ect
627713

f xBar nDoor Cl oseEf f ect
626689

f xVeneti anBl i ndsEf f ect

131296
fxlrisOpenEff ect

1023009
fxlrisC oseEffect

986145

Constants

Description

If specified, causes the animation to begin at the
edge of the screen, ending up at the ultimate view
location. Without this flag, the entire animation
occurs within the bounds of the view being
animated.

Reveals a view using a checkerboard effect, where
adjoining squares move in opposite (up and
down) directions.

Reveals a view from center towards left and right
edges, like a barn door opening where the view is
the inside of the barn.

Reveals a view from left and right edges towards
the center, like a barn door closing where the view
is painted on the doors.

Reveals a view so that it appears behind venetian
blinds that open.

Changes the size of an invisible “aperture”
covering the view, revealing an ever-increasing
portion of the full-size view as the aperture opens.

Like f x1 ri sOpenEf f ect, but decreases the size
of an invisible “aperture” covering the view, as the
aperture closes.

2-17

CHAPTER 2

Views Reference

Table 2-6 vi ewEf f ect constants (continued)

Constant Integer Value Description

f xPopDownEf f ect

393216 Reveals a view as it slides down from its top
boundary.
f xDr awer Ef f ect 133120 Reveals a view as it slides up from its bottom
boundary.
f xZoomOpenEf f ect
236577 Expands the image of the view from a point in the

center until it fills the screen; that is, the entire
view appears to grow from a point in the center of
the screen.

f xZoonl oseEf f ect

199713 Opposite of f xZoonOpenkEf f ect . This value
shrinks the image of the view from a point in the
center until it disappears or closes on the screen.

f xZoonVerti cal Ef f ect

165920 The view expands out from a horizontal line in the
center of its bounds. The top half moves upward
and lower half moves downward.

Functions and Methods

The following sections describe view functions and methods.

Getting References to Views

The following sections describe the functions and methods used to get
references to views.

2-18 Functions and Methods

CHAPTER 2

Views Reference

ChildViewFrames

view: Chi | dVi ewFr anes()

Returns an array of views that correspond to the child views of the view to
which this message is sent. The views are returned in the same order they
appear in the view hierarchy, from back to front. The most recently opened
views (which appear on top of the hierarchy) will be later in the list. Views
with the vFI oat i ng flag will be located at the end of the array.

IMPORTANT

Use this method to get to the child views of a view. If you
just reference the vi ewChi | dr en or st epChi | dr en slots
in the view, you get references to the child templates, not the
views. Of course, you can also directly reference any
declared child view. a

Parent

view: Par ent ()

Returns the parent view of the view to which this message is sent. This is the
recommended method of getting a reference to a view’s parent view, rather
than directly referencing the _par ent slot.

GetRoot
CGet Root ()

Returns the system root view.

All applications are normally declared in the root view under their
application symbol. This means there is a slot in the root view whose name is
the application symbol and whose value is that view. You can use this code
to test if an application is open:

Get Root () . applicationSymbol. vi ewCObj ect ;

If the application is open, this function returns a non-ni | value; otherwise,
ni | is returned. This reference is always present as long as a view is open, and
ni | when a view is closed.

Functions and Methods 2-19

2-20

CHAPTER 2

Views Reference

GetView

Get Vi ew(symbol)

Returns the first view found that corresponds to the specified symbol. If no
view is found, ni | is returned.

symbol A symbol identifiying a view template you want to get.
Besides a view template name, you can pass in the
following special symbols (which are evaluated at run
time):

= ' Vi ewFr ont Mbst, to return the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewF| ags slot.

= ' Vi ewFr ont Most App, to return the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewFl ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

= ' Vi ewFr ont Key, to return the view on the screen that accepts keys (there
can be only one view that is the key receiver) See “Text and Ink Input and
Display” (page 8-1) in the Newton Programmer’s Guide for more
information on key receivers.

Displaying, Hiding, and Redrawing Views

The methods and functions described in the following subsections describe
how to display, hide, and redraw views.

Open

view: Qpen()

Creates the graphic representation of the view. This method then plays the
“show” sound (stored in the showsound slot), brings the view to the front,
and shows it and all of its child views.

The view receives the following system messages: Vi ewSet upFor nScri pt,
Vi ewSet upChi | drenScri pt, Vi ewSet upDoneScri pt,

Vi ewShowScr i pt, and Vi ewDr awScr i pt . Note that these same system
messages (except for Vi ewShowScr i pt) are sent to all visible child views of

Functions and Methods

CHAPTER 2

Views Reference

the view as they are created and shown as well. For information about these
system messages, refer to “Application-Defined Methods” (page 2-65).

This method always returns t r ue.

Note that this message must be sent to a view, not to a template. To ensure
that a view exists for the template, you must have declared it. For details on
declaring a view, see “View Instantiation” (page 3-26) in Newton
Programmer’s Guide.

You can use this code to test if a view is open:

view. vi ewCObj ect ;

If the view is open, this code returns a non-ni | value; otherwise, ni | is
returned. This reference is always present as long as a view is open, and is
always ni | when a view is closed.

Close

view: Cl ose()

Closes the specified view. This means that if the view is currently visible, this
method plays the “hide” sound (stored in the hi desound slot), calls

Vi ewHi deScri pt, hides the view and all of its child views, calls

Vi ewQui t Scri pt, and then deletes the view from memory. This method
always returns non-ni | .

Note that if the view is hidden (it was opened and then sent the Hi de
message), and you send it the Cl ose message, it will be closed. This is
because the view is still considered open even when it is hidden. You won’t
see anything change on the screen since the view is already not visible, but
the view will be deleted from memory. Also, in this case, the “hide” sound is
not played and the Vi ewHi deScri pt message is not sent.

If the view has already been closed, nothing happens.

If the view is a declared view, the view memory object is not deleted as a
result of the Cl 0se message, as long as the view it is declared in is still open.
Only the graphic representation of the view is deleted. If you want to reopen
the view, send it an Open or a Toggl e message.

Functions and Methods 2-21

2-22

CHAPTER 2

Views Reference

Note

If you need to close a view from a method within the view
itself, you may want to send the Cl ose message using the
function AddDef er redCal | so that the Cl ose message is
delayed until after the currently executing method finishes.
For example, you could use code like this:

begi n

local me := self;

AddDef erredCal | (func() ne:close(), '[]);
end

O

Toggle

view: Toggl e()

If the view is currently closed, this method performs the same operations as
if the view had been sent the Open message.

If the view is currently open, this method performs the same operations as if
the view had been sent the O ose message.

Note that if the view is hidden (it was opened and then sent the Hi de
message), and you send it the Toggl e message, it will be closed. This is
because the view is still considered open even when it is hidden. You won’t
see anything change on the screen since the view is already invisible, but the
view will be deleted from memory. Also, in this case, the “hide” sound is not
played.

Toggl e returns non-ni | if the view is to be opened, or ni | if the view is to

be closed, as a result of calling this method.

Note that this message must be sent to a view, not to a template. To ensure
that a view exists for the template, you must have declared it. For details on
declaring a view, see “View Instantiation” (page 3-26) in Newton
Programmer’s Guide.

Functions and Methods

CHAPTER 2

Views Reference

Note that Toggl e actually creates and destroys view objects (like Open and
d ose), while Showand Hi de simply make existing views visible or
invisible.

Show

view: Show()

If the view is currently hidden, this method plays the “show” sound (stored
in the showsound slot), brings the view to the front, shows it and all of its
visible child views, and calls the Vi ewShowScr i pt . Note that you must
specify a view. The return value is unspecified.

You can use this method only if the view has previously been opened (you
have sent it the Open or Toggl e message) and then hidden (you have sent it
the Hi de message).

Even though all children of the view being shown are also shown, the child
views are not sent the Vi ewShowScr i pt message. This message is sent only
to the view on which you use the Showmethod directly.

Hide

view: Hi de()

If the view is currently shown, this method plays the “hide” sound (stored in
the hi desound slot), calls the Vi ewHi deScri pt, and hides the view and all
of its child views. The return values is unspecified.

Even though all children of the view being hidden are also hidden, the child
views are not sent the Vi ewHi deScr i pt message. This message is sent only
to the view on which you use the H de method directly.

To show the view again, send it the Showmessage.

Note that when a view is hidden, the view in memory is not destroyed. All
that actually happens is the bits are removed from the screen. The view is
still considered open. This allows fast performance when the view is
subsequently shown again.

Functions and Methods 2-23

2-24

CHAPTER 2

Views Reference

Dirty

view: Dirty()

Marks the view as needing redrawing. The view (and its visible child views)
will be redrawn the next time the system idle task is executed. This method
always returns non-ni | .

The system tries to handle redrawing only the parts of the view hierarchy
that have been dirtied, but it has a limited cache of update nodes (places in
the view hierarchy where it starts drawing from). If you dirty several views,
the update nodes may merge by remembering a common ancestor of two
dirty views and starting the redrawing from there when the time comes to
update. To flush out the updates, call Ref r eshVi ews, which sometimes
may be more efficient since the update is more precise.

When a view is redrawn as a result of the Di r t y method, the system does
not necessarily reread all of the slots in the view. For example, slots
describing the view contents are not read—the contents are assumed to have
not changed. If you were to directly change the t ext slot of a

cl Par agr aphVi ewand then send it the Di r t y message, you would not see
the text in the view change.

Usually, you want a view to redraw with its new contents, if the contents
change. To do this, use the global function Set Val ue (page 2-25) to change
the contents of slots in the view. The Set Val ue function causes the system
to reread the changed slots in the view before it is redrawn, and it
automatically dirties the view so you don’t have to send it the Di rty
message.

If you change the bounds of a view directly, Di r t y does not cause the view
to be redrawn with new bounds. To do that, send the view the SyncVi ew
(page 2-26) message.

OffsetView

view: Of f set Vi ew(dx, dy)

Offsets a view by dx horizontally and dy vertically. The return values is
unspecified.

Functions and Methods

CHAPTER 2

Views Reference

dx The x coordinate of amount you want to offset the view.
dy The y coordinate of amount you want to offset the view.

O f set Vi ewdoes the redraw faster and more easily than Set Ori gi n.
O f set Vi ew changes where a view is within its parent, Set Ori gi n
changes the locatin of the children/contents of a view.

RefreshViews
Ref reshVi ews()

Redraws all views immediately, if they need to be updated. This function
always returns non-ni | .

SetValue

Set Val ue(view, slotSymbol, value)

Sets the value of a slot in a view. The view is flagged as dirty, so it will be
redrawn using the new information.

view The view in which you want to change a slot value.

slotSymbol A symbol naming the slot whose value you want to
change. Note that you must specify a symbol (quoted
identifier), for example, ' my Sl ot .

value The new value of the slot.
This function always returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for the view parameter:

= ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

= ' Vi ewFr ont Mbst App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewFl ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

= ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Functions and Methods 2-25

2-26

CHAPTER 2

Views Reference

As expected, the view is redrawn immediately with its new settings if you
set the value of one of the following slots: vi ewBounds, vi ewFor mat,

vi ewdusti fy, vi ewFont, vi ewFl ags. Additionally, for these slots, the
effect is as if you had sent the SyncVi ewmessage to the view, including
calling the Vi ewSet upFor nScr i pt method (see the SyncVi ewmethod,
next).

If the view exists, any dependent views (see the Ti eVi ews function on
(page 2-55)) are notified, and the Vi ewChangedScr i pt message is sent to
the view.

If you specify a slot that does not exist in the view, the slot is created in the
view.

Note

Set Val ue now changes the recognition behavior of a view
at run time by setting new recognition flags in the

vi ewFl ags slot. The new recognition behavior takes effect
immediately following the Set Val ue call. See the 1.0
Newton Programmer’s Guide for details on this call’s previous
behavior. O

SyncView

view: SyncVi ew()

Redraws a view after you change its vi enBounds slot. Before the view is
redrawn with new bounds, the Vi ewSet upFor nfScr i pt message is sent to
the view. SyncVi ewalways returns t r ue.

MoveBehind

viewToMove: MoveBehi nd(view)

Moves a view behind another view, redrawing the screen as appropriate.

view The view identified by viewToMove is moved behind
this view. If the view parameter is ni | , viewToMove is
brought to the front.

Functions and Methods

CHAPTER 2

Views Reference

If the view is a floating view (has the VFI oat i ng vi ewFl ags bit set), it can
be moved behind only another floating sibling view, because floating views
cannot appear behind nonfloating views.

The return value of this method is undefined.

Dynamically Adding Views

The following functions are useful for creating and removing views at run
time.

AddStepView
AddSt epVi ew(parentView, childTemplate)

Dynamically instantiates a new view based on the specified child template
and adds it to the parent’s st epChi | dr en array. You must send the Di rty
message to the new view or to its parent view to cause the new view to be
drawn. See “Using the AddStepView Function” (page 3-35) in Newton
Programmer’s Guide for information on using this function.

parentView The parent view to which you want to add the new
view.
childTemplate A template describing the new view you want to add.

This function returns the view if it was successfully created; otherwise, ni |
is returned.

You can pass in the following special symbols (which are evaluated at run
time) for the parentView parameter:

= ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

= ' Vi ewFr ont Mbst App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewFl ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

= ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Functions and Methods 2-27

2-28

CHAPTER 2

Views Reference

Because this function adds an item to the parent’s st epChi | dr en array, you
must ensure that the array is in RAM, or AddSt epVi ewwill fail. You can use
this code:

i f not HasSl ot (parentView, 'stepChildren) then
parentView. st epChi | dren : = Cl one(parentView. st epChi | dren);

Thei f statement checks if the st epChi | dr en slot already exists in the
parent view (in RAM). If it does not, it is copied out of the template in your
package into RAM.

Note that you can add an invisible view; that is, one with its vVi si bl e flag
not set. You might want to do this if you want the view to show itself with an
effect. First add it invisibly, then send it the Showmessage. (If you just add it
as a visible view, any view effect you specify is not done when it is first
displayed.)

RemoveStepView

RenoveSt epVi ew(parentView, childView)

Removes a child view from its parent view. The child view is closed, if visible.

parentView The parent view from which you want to remove the
child view.
childView The child view you want to remove.

This function always returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for either the parentView or childView parameters:

= ' Vi ewFr ont Mbst, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

= ' vi ewFr ont Most App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewF| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

= ' Vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Functions and Methods

CHAPTER 2

Views Reference

If the specified child view is a root-level view (a child of the root view), this

function plays the “hide” sound (stored in the hi desound slot in the view),
sends the view a Vi ewHi deScri pt message, sends the view a

Vi ewQui t Scri pt message, and hides the view (and all of its child views).

If the specified child view is not a child of the root view, the same operations
occur, except that the hide sound is not played and the Vi ewH deScr i pt
message is not sent.

Note

This function removes the view template from the

st epChi | dr en array of the parent view. You do not need to
remove the template yourself. For a description of how this
function worked in the previous release, see “Views” in the
1.0 Newton Programmer’s Guide. O

AddView
AddVi ew(parentView, childTemplate)

Dynamically instantiates a new view based on the specified child template
and adds it to the parent’s vi ewChi | dr en array. You must send the Di rty
message to the new view or to its parent view to cause the new view to be
drawn.

parentView The parent view to which you want to add the new
view.
childTemplate A template describing the new view you want to add.

This function returns the view if it was successfully created; otherwise, it
returnsni | .

You can pass in the following special symbols (which are evaluated at run
time) for the parentView parameter:

= ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

= ' vi ewFr ont Most App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewF| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

Functions and Methods 2-29

2-30

CHAPTER 2

Views Reference

= ' Vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

Because this function adds an item to the parent’s vi ewChi | dr en array, you
must ensure that the array is in RAM, or AddSt epVi ewwill fail. You can use
this code:

i f not HasSl ot (parentView, 'vi ewChil dren) then
parentView. vi ewChi | dren : = C one(parentView. vi ewChi | dren) ;

Thei f statement checks if the vi ewChi | dr en slot already exists in the
parent view (in RAM). If it does not, it is copied out of the template in your
package into RAM.

Note that you can add an invisible view; that is, one with its vVi si bl e flag
not set. You might do this if you want the view to show itself with an effect.
First add it invisibly, then send it the Showmessage. (If you just add it as a
visible view, any view effect you specify is not done when it is first
displayed.)

RemoveView

RenoveVi ew(parentView, childView)

Removes a child view from its parent view. The child view is closed, if visible.

parentView The parent view from which you want to remove the
child view.
childTemplate The child view you want to remove.

This function always returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for the either the parentView or childView parameters:

= ' Vi ewFr ont Most, to indicate the frontmost view on the screen that has
the vAppl i cat i on flag set in its vi ewF| ags slot.

= ' vi ewFr ont Most App, to indicate the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

Functions and Methods

CHAPTER 2

Views Reference

= ' vi ewFr ont Key, to indicate the view on the screen that accepts keys
(there can be only one view that is the key receiver).

If the specified child view is a root-level view (a child of the root view), this

function plays the “hide” sound (stored in the hi desound slot in the view),
sends the view a Vi ewHi deScri pt message, sends the view a

Vi ewQui t Scri pt message, and hides the view (and all of its child views).

If the specified child view is not a child of the root view, the same operations
occur, except that the hide sound is not played and the Vi ewH deScr i pt
message is not sent.

BuildContext

Bui | dCont ext (template)

Dynamically instantiates a new view based on the specified template and
adds it to the root view.

template A template describing the new view you want to add.
This function returns the view that it creates.

To display the newly created view, send it the Open message. The vi ewFl ags
slot must not have the vVi si bl e flag set. It's best if you don’t set the

vVi si bl e flag in the template; that way you can display the view with a
simple Open message, and this also allows any view effect you specify to be
done when the view is first shown.

The parent of the new view is set to the root view. The template is not added
to the vi ewChi | dr en or st epChi | dr en array of any view. The _pr ot o
slot of the new view is set to the template that it was created from.

Making Modal Views

The following methods are used to make modal views.

Functions and Methods 2-31

CHAPTER 2

Views Reference

AsyncConfirm

AsyncConf i r n{ confirmMessage, buttonList, fn)

This method creates and displays a slip that the user must dismiss before
continuing. The slip is created at a deferred time, so the call to

AsyncConf i r mreturns immediately, allowing the currently executing
NewtonScript code to finish. AsyncConf i r nis return value is unspecified.

confirmMessage A string to be displayed to the user.
buttonList A symbol (' okCancel ,' yesNo), an array of strings,
for example [" Three", "Two", "One"], or anarray

of frames; each frame has two slots, ' val ue and

"t ext . The slot' t ext holds the value for the button, a
string. The slot ' val ue holds the result that tapping the
button generates.

If a symbol was passed, the result is non-ni | for the
“OK” and “Yes” buttons, and ni | for the “Cancel” and
“No” buttons. If an array of strings was passed, the
result is the index into the array of the item that was
chosen. If an array of frames was passed, the result is
the contents of the value slot for the item that was
chosen.

fn A closure to be called when the slip is dismissed. It is
passed as one argument, the value of the button tapped.

ModalConfirm

Modal Conf i r n{ confirmMessage, buttonList)

This method creates and displays a slip that returns the result of the user’s
choice. Because this method causes a new task to be spawned, it is less
efficient and takes more system overhead, so you should use

AsyncConf i r min most cases.

2-32 Functions and Methods

CHAPTER 2

Views Reference

For example:

i f Modal Confirm("Do you want to erase?", 'okCancel) then

confirmMessage A string to be displayed to the user.

buttonList See AsyncConf i r mfor a list of symbols and arrays that
you can pass in for the buttonList.

FilterDialog

view: Fi | ter Di al og()

This method opens a view and returns t r ue immediately after opening.

Fi | t er Di al og is the same as Open except that the view is modal. This
means that all taps outside the modal view are ignored while the modal view
is open. The modal state is exited when the modal view is closed.

Fi | ter D al og is preferred over Mbdal Di al og as it does not spawn a new
task when it is used.

Like Open, the Fi | t er Di al og method creates the graphic representation of
the view. It then plays the “show” sound (stored in the showsound slot),
brings the view to the front, and shows it (and all of its child views). The
view receives the following system messages: Vi ewSet upFor nScri pt,

Vi ewSet upChi | drenScri pt, Vi ewSet upDoneScri pt,

Vi ewDr awScr i pt, and Vi ewShowScr i pt . For information about these
system messages, refer to “Application-Defined Methods” (page 2-65).

Note that the Fi | t er Di al 0og message must be sent to a view, not to a
template. To ensure that a view exists for the template, you must have
declared it. For details on declaring a view, see “View Instantiation”
(page 3-26) in Newton Programmer’s Guide..

ModalDialog
view: Modal Di al og()

This method is the same as Fi | t er Di al og, except that it spawns a separate
OS task and doesn’t return until after the dialog is closed.

Functions and Methods 2-33

CHAPTER 2

Views Reference

This method always returns t r ue.
Note

Modal Di al og will not work correctly if it is sent to a
non-root child. O

Setting the Bounds of Views

The following functions and view methods calculate and return a
vi ewBounds frame.

RelBounds

Rel Bounds(left, top, width, height)

Returns a bounds frame, if you know the top-left coordinate and the width
and height of the view. This function calculates the right and bottom values
and returns a bounds frame. The value returned can be used for the value of
the vi ewBounds slot in a template.

left The left coordinate of the view.
top The top coordinate of the view.
width The width of the view.

height The height of the view.
SetBounds

Set Bounds(left, top, right, bottom)

Returns a bounds frame when supplied with the four bounds values. The
value returned can be used for the value of the vi ewBounds slotin a

template.

left The left coordinate of the view.

top The top coordinate of the view.
right The right coordinate of the view.
bottom The bottom coordinate of the view.

2-34 Functions and Methods

CHAPTER 2

Views Reference

GlobalBox

view: @ obal Box()

Returns the rectangle, in global coordinates, of the specified view. The
rectangle is returned as a bounds frame. If a valid view is not found, this
method throws an exception.

Note

If called from the Vi ewSet upFor nScr i pt method,

G obal Box gets the vi ewBounds and vi ewdust i fy slots
from the view, calculates the effects of the sibling and parent
alignment on the view bounds, and then returns the
resulting bounds frame in global coordinates. O

GlobalOuterBox
view: @ obal Qut er Box()

Returns the rectangle, in global coordinates, of the specified view, including
any frame that is drawn around the view. The rectangle is returned as a
bounds frame. If a valid view is not found, this method returns ni | .

This method is just like G obal Box, except that G obal Qut er Box includes
the frame around the view.

Note

If called from the Vi ewSet upFor nScr i pt method,

d obal Qut er Box gets the vi enBounds and

vi ewdust i f y slots from the view, calculates the effects of
the sibling and parent alignment on the view bounds, and
then returns the resulting bounds frame in global
coordinates. O

Functions and Methods 2-35

2-36

CHAPTER 2

Views Reference

LocalBox

view: Local Box()

Returns a vi ewBounds frame containing the view bounds relative to the
view itself. That is, the top-left coordinates are both zero, the right coordinate
is the width of the view, and the bottom coordinate is the height of the view.
If a valid view is not found, this method throws an exception.

Note

If called from the Vi ewSet upFor nScri pt method,

Local Box gets the vi enBounds and vi ewJust i fy slots
from the view, calculates the effects of the sibling and parent
alignment on the view bounds, and then returns the
resulting bounds frame in local coordinates. O

DirtyBox

view: Di rt yBox (boundsFrame)

Marks a portion of a view (or views) as needing redrawing. The view (and its
visible child views) is redrawn the next time the system idle task is executed.

boundsFrame Abounds frame describing the area of the screen to be
dirtied, in global coordinates.

The return value of this method is undefined.

This method may save screen update time if only a portion of a view needs
redrawing, rather than the whole view.

You can use the Di r t yBox method anywhere you would use the Di rty
method.

GetDrawBox

view: Get Dr awBox ()

Returns the bounds of the area on the screen that needs redrawing (the area
marked as dirty). The dirty area is always non-ni 1. This method returns a
bounds frame containing global coordinates.

Functions and Methods

CHAPTER 2

Views Reference

Note

Cet Dr awBox will provide meaningful results only when
called from Vi ewDr awScri pt. O

ButtonBounds

But t onBounds(width)

Returns a vi ewBounds frame when supplied with the width of a button to
be placed in the status bar. You can use this return value for the value of the
button vi ewBounds slot.

width The width of the button to place in the status bar.

For the first button you place in the status bar, specify the width as a
negative number. For example, if you want the button to be 30 pixels wide,
specify —30. This signals that this is the first button, and the bounds are
calculated to place it at a standard offset (36 pixels) from the left side of the
status bar.

For subsequent buttons that you place in the same status bar, specify the
width as a positive number. For subsequent buttons, you must also use the
vi ewJusti fy flagvj Si bl i ngRi ght H.

Note

This function is available in the Newton Toolkit
development environment at compile time only. It is not
available at run time. O

StdButtonWidth
St dBut t onW dt h(str)

Returns the button size necessary to fit a string of specified text.
str A string that contains the button name.

This function internally calls St r Font W dt h.

Functions and Methods 2-37

2-38

CHAPTER 2

Views Reference

PictBounds

Pi ct Bounds(name, left, top)

Returns a vi ewBounds frame for views containing pictures. This function
opens the picture resource, finds the width and height of the picture, and
returns the proper bounds frame. The value returned is used for the value of
the vi ewBounds slot in a template.

name A string that is the name of a PICT resource.
left The left coordinate of the view.

top The top coordinate of the view.

Note

This function is available in the Newton Toolkit
development environment at compile time only. It is not
available at run time. O

Animating Views

There are four view methods that perform special animation effects on views.

Effect

view: Ef f ect (effect, offScreen, sound, methodName, methodParameters)

Posts a message to the specified view to redraw it with an animation.
However, the system does not actually do the animation until after it calls
the method that you specify, in which you can do any operations required
before the animation is done. For example, you might want to animate a
view as you change its contents.

effect Specifies an animation effect. You can specify any of the
effect constants that are used in the vi ewEf f ect slot
(see “Opening and Closing Animation Effects”
(page 3-23) in Newton Progammer’s Guide).

offScreen Specifies whether or not the view should appear to
animate off or onto the screen. Specify non-ni | to make

Functions and Methods

CHAPTER 2

Views Reference

sound

methodName

methodParameters

the animation appear as if the view is moving off the
screen (for example, closing). Specify ni | to make the
animation appear as if the view is moving onto the
screen (for example, opening).

A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify ni | .)

This method changes the state of your view (the two
states that the effect transitions between). You must
specify a symbol (for example, ' myScr i pt). Do not
change the state of your view before calling Ef f ect .
This method must be accessible from the view to which
the Ef f ect message is sent; that is, this method must
reside in that view or be accessible from that view
through inheritance.

An array of parameters that are passed to your method.

The Ef f ect method always returns ni | .

Here is an example using this method:

aView := {...

doEf fect: func()

begin

vi ewl: Ef f ect (f xZoomVertical Effect, nil, ROM pl unk,

end,

-}

viewl 1= {...
text: "",
ef fectScript:

begin

"effectScript,[]);

func()

Set Val ue(viewl, 'text, "This is a paragraph view ..");

Functions and Methods 2-39

2-40

CHAPTER 2

Views Reference

end,

-}

SlideEffect

view: Sl i deEf f ect (contentOffset, viewOffset, sound, methodName,

methodParameters)

Posts a message to the specified view to perform a vertical sliding animation
on it. However, the system does not actually do the animation until after it
calls the method that you specify, in which you must do any operations that
change the state of your view.

contentOffset

viewOffset

sound

methodName

The number of pixels to animate the view contents
scrolling in a vertical direction. A positive number
makes the view contents appear to move downwards. A
negative number makes the view contents appear to
move upwards. Note that only the bits on the screen are
moved; the location of the actual view data is not
affected.

The number of pixels to animate the whole view
moving up or down on the screen. Specify a positive
number to make the view appear to move up on the
screen. To make the view appear to move down, specify
a negative number.

If you don’t want to make the view appear to move, but
just want to scroll its contents, specify zero.

A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify ni | .)

The method that you want called before the animation
occurs. You must specify a symbol (for example,

' nyScri pt). This method must be accessible from the
view to which the S| i deEf f ect message is sent; that

Functions and Methods

CHAPTER 2

Views Reference

is, this method must reside in that view or be accessible
from that view through inheritance.

methodParameters ~ An array of parameters that are passed to your method.
The Sl i deEf f ect method always returns ni | .

Note that this method does not actually change the bounds of the view or the
position of its contents. The bits are moved on the screen, but that is all that
occurs.

If you want to change the bounds or the position of the contents, you must
do so in the method that you supply, appropriately to correspond to the
visual effect that you specified in this call.

To animate a view scrolling in place, without changing its size, specify a
positive or negative contentOffset and zero for viewOffset (for example, -50, 0).
To slide a view up from the bottom, showing more of it, but keeping the data
that was near the top still near the top, specify a negative contentOffset and a
viewOffset that is the same as contentOffset, but positive (for example, -50, 50).
To shrink the view back down, specify a positive contentOffset and a negative
viewOffset (for example, 50, -50).

Here is an example of this method:

aView := {...
slideUp: func()
begin
| ocal anount := 100;

vi ewl: Sl i deEf f ect (-anmount, anmount, ROMfIip,
"nyEffect, ['up, anount]);

end,
sl i deDown: func()
begin
| ocal anpunt := 100;

vi ewl: Sl i deEf f ect (anmount, -anmount, ROMfIip,
"nyEf fect, ['down, -ampunt]);
end,

-}

Functions and Methods 2-41

2-42

CHAPTER 2

Views Reference

viewl ;= {...
myEf fect: func(direction, amount)
begi n
| ocal bounds := self.viewbounds; //copy viewbounds
If direction = "up then
begin // only top needs changi ng
bounds. top : = bounds. t op- anount;
Set Val ue(vi ewl, 'vi ewbounds, bounds);
end

Else // direction is down
begin // only top needs changing

bounds. top : = bounds.top-anount;
Set Val ue(vi ewl, 'vi ewbounds, bounds);
end

end,

-}

RevealEffect

view: Reveal Ef f ect (distance, bounds, sound, methodName,
methodParameters)

Posts a message to the specified view to perform a revealing animation on it.
However, the system does not actually do the animation until after it calls
the method that you specify, in which you must perform any operations
required before the animation is done.

distance The number of pixels to animate a portion of the view
moving up or down on the screen. Specify a positive
number to make the view portion appear to move
upward on the screen this number of pixels. To make
the view portion appear to move downward, specify a
negative number. The distance parameter should be the
height of the view content you want to reveal (or hide).

bounds The partial area of the view that you want to animate
moving up or down. You should specify a vi ewBounds

Functions and Methods

CHAPTER 2

Views Reference

frame using coordinates local to the view to which you
are sending this message. The portion of the view that
you specify is copied above or below its present
position, depending on the setting of distance.

sound A sound frame containing a sound that you want
played concurrently with the animation. (If you don’t
want a sound, specify ni | .)

methodName The method that you want called before the animation
occurs. You must specify a symbol (for example,
" myScri pt). This method must be accessible from the
view to which the Reveal Ef f ect message is sent; that
is, this method must reside in that view or be accessible
from that view through inheritance.

methodParameters ~ An array of parameters that are passed to your method.

A revealing effect is like a slide effect, except that it slides just a portion of
the view either up or down, while leaving the rest of the view in place. This
can be used to create an effect that reveals new information where the
portion of the view moved from. The method you specify as a parameter
should set up the new information to be revealed so that when the view is
redrawn, the new information is visible.

The Reveal Ef f ect method always returns ni | .

Here is an example of this method:

aView := {...
reveal More: func() // nove view portion downwards
begi n
|l ocal vb := viewl: Local Box();
vb.top := 60; vb.bottom:= 80;
vi ewl: Reveal Ef fect (40, vb, ROM flip, ' myEffect,[' dn]);
end,
cl oseUp: func() // nove view portion upwards
begi n
|l ocal vb := viewl: Local Box();
vb.top := 60; vb.bottom:= 120;

Functions and Methods 2-43

2-44

CHAPTER 2

Views Reference

vi ewl: Reveal Ef fect (-40, vb, ROM flip, "' nyEffect,[' up]);

end,
-}
viewl ;= {...
nyEffect: func(direction)
begi n
If direction = "up then // revealing | ess
begi n

/1 Here you woul d change the view contents so it
/1 renoves that portion being hidden ...
end
Else // revealing nore
begi n
/1 Here you woul d change the view contents so it
/1 includes the "reveal ed" information ...
end
end,

-}

Delete

view: Del et e(methodName, methodParameters)

Posts a message to the specified view to perform an animation on it that
crumples the view and tosses it into a trash can that appears on the screen.
The view is not actually deleted—only the animation is done.

methodName The method that actually removes the view or changes
it to make it appear deleted. You must specify a symbol
(for example, ' myScr i pt). This method must be
accessible from the view to which the Del et e message
is sent; that is, this method must reside in that view or
be accessible from that view through inheritance.

methodParameters ~ An array of parameters that are passed to your method.
The Del et e method always returns ni | .

If you want to delete the view or remove the data shown in it, you must do
these things yourself in the method you supply. For example, the view may

Functions and Methods

CHAPTER 2

Views Reference

be showing an item from a soup. When the Del et e animation is performed,
you would typically want to clear the data from the view and possibly delete
the data from the soup also. Alternatively, you might want to close the view.

Here is an example of this method:

aView := {...
/1 call Delete method
doDel et eEf fect: func(what Dat a)
text Vi ew. Del ete(' myDel ete, [whatData]);

-}

parent _of textView := {...

myDel et e: func(what)
begin
/Iremove data from soup
Ent r yRemoveFr onSoupXmi t (what, kAppSynbol) ;
textview Cose(); // close the view being del eted
end,

-}

Dragging a View

Dragging a view means allowing the user to move the view by tapping it,
holding the pen down, and dragging it to a new location on the screen. To
drag a view, send the view a Dr ag message.

Drag

view: Dr ag(unit, dragBounds)

This method is typically called from within a Vi ewCl i ckScri pt method. It
tracks the pen on the display, and drags the view to follow it.

unit The current stroke unit passed by the
Vi ewd i ckScri pt message.

Functions and Methods 2-45

2-46

CHAPTER 2

Views Reference

dragBounds A bounds frame describing the area, relative to the root
view, within which the view can be dragged. If
dragBounds is ni | , the bounds of the entire screen limit
the dragging area.

The return values is unspecified.

The display of electronic ink is turned off during the dragging operation.
Here is an example of this view method:

draggabl eView : ={. ..

vi ewFl ags: vVisible + vdickabl e,
viewC i ckScript: func(unit)

begi n

local limts;

limts := SetBounds(5,50, 230, 305);
:Drag(unit, limts);

true; // return true because we’ve handled the tap
end,

-}

Dragging and Dropping a ltem

The following method is used to drag and drop an item.

DragAndDrop

view: Dr agAndDr op(unit, bounds, limitBounds, copy, draglinfo)

This method is typically sent from the Vi ewCl i ckScri pt . It starts the drag
and drop process and returns when the dragged item(s) is dropped into a
view or into the clipboard.

unit The stroke unit received by the Vi ewd i ckScri pt
method.
bounds The bounds of the item to be dragged, in global

coordinates. The bitmap enclosed by the bounds is the
bitmap used by the clipboard.

Functions and Methods

CHAPTER 2

Views Reference

limitBounds Lets you pass in a bounds frame, in global coordinates,

whose boundaries limit the dragging, so the object
cannot be dragged outside of the specified bounds.
limitBounds has a value of ni | or a bounds frame. A
value of ni | means don’t limit the bounds. A bounds
frame specifies the bounds limits.

copy A Boolean value indicating whether to drag a copy or

the original items. Specify non-ni | to drag a copy or
ni | to move the original items.

draginfo An array of frames (one frame per dragged item). Each

frame has the following slots:

types An array of symbols of the types to which
an item can be converted.

vi ew A view object type if the dragged item is a
view with a symbol type of ' par agr aph,
' pol ygon, ' pi ct ur e, and so on).

dr agRef Any value that will be passed to other
methods.

| abel An optional string used when the drop is
to the Clipboard; it is used as the
Clipboard label. If this slot is missing and
the item has a' t ext type, the text data is
used as the label; otherwise a default label
is used.

Dr agAndDr op’s return value can be one of the following:

kDragNot = 0 indicates whether the item was actually dragged at all.

kDragged = 1 indicates that the item was dragged, but was rejected by
the destination.

kDr agNDr opped = 2 indicates that the view was dropped into another
container (view).

If you want other views to be able to accept data, these views must
implement all of the destination methods. If you have more than one view

Functions and Methods 2-47

2-48

CHAPTER 2

Views Reference

that can receive a drop, it is easier if you make one drop-aware proto and use
it for your other views.

The Dr agAndDr op method sends several messages to both the source view
(the view to which Dr agAndDr op was sent) and the destination view (the
view that will receive the items). These messages are documented in
“Application—Defined Methods” (page 2-65).

Scrolling View Contents

The following methods are used to scroll a view’s contents.

SetOrigin

view: Set Ori gi n(originX, originY)

Changes the view bounds offset to reflect the new origin point, if it is
different from the current origin, and “dirties” the view (so you don’t have to
send it the Di rt y message). Set Ori gi n works only on view children.

originX The x coordinate of the new view origin.
originY The y coordinate of the new view origin.
This method always returns ni | .

This method scrolls the child views of the view to which you send the
Set Ori gi n message. The following table shows what parameters to pass to
Set Ori gi n to scroll the child views in different directions:

originX originY Visual direction Scroll direction
Zero positive Up Down

zero negative Down Up

positive zero Left Right
negative Zero Right Left

This method sets the vi ewOr i gi nXand vi ewOr i gi nY slots in the view to
the new values you specify.

Functions and Methods

CHAPTER 2

Views Reference

The view origin determines where, within the view bounds, the actual view
contents (child views) are displayed. Initially, the view origin is set to (0, 0).
This means that the top-left corner of the view contents (point (0, 0)) is
positioned at the top-left corner of the view bounds. If you change the view
origin, the view contents are positioned so that the point you specify as the
origin is placed at the top-left corner of the view bounds. Thus, the contents
are offset within the view. The current view origin coordinates are stored in
the slots vi ewr i gi nXand vi ewOr i gi nY within the view.

When using Set Ori gi n to scroll a view, you typically want the contents of
the view to be clipped to some particular area. For example, you might want
to scroll a large map around within a view so that the user can see different
parts of the map within the same view. To get this effect, make the parent
view smaller than the child (the map, for example) that you want to scroll.
The parent view should be as big as the part of the child you want to show at
one time.

Set the vd i ppi ng flag in the vi ewF| ags slot of the parent view. When you
send the Set Or i gi n message to the parent view, the child view will scroll
and be clipped to the bounds of its parent view.

Figure 2-1 shows an example of a world map before and after it has been
scrolled. The map is enclosed in a parent view, which is the rectangle around
the map. The map was scrolled to the right with this code:

par ent Vi ew. Set Ori gi n(40, 0)

Figure 2-1 Set Ori gi n example

Eefore Scralling After scrolling Right

Functions and Methods 2-49

2-50

CHAPTER 2

Views Reference

Here is an example of using this view method:

ParentView : = {...

vi ewFl ags: vVisi bl e+vd i ppi ng,

vi ewOrigi nX: 0,

viewOriginY: O,

-

Scrol Il RightButton := {...

butt onPressedScri pt: func()
begi n
par ent Vi ew. Set Ori gi n(par ent Vi ew. vi enOr i gi nX+20, 0);
Ref reshVi ews() ;
end,

-}

SyncScroll

view: SyncScr ol | (what, index, upDown)

Scrolls the child views of a view vertically the increment of one child view in
the direction indicated.

what You can specify either an array of view templates or a
soup cursor, depending on what kind of data is
contained in the view you want to scroll. If all view
children are contained in an array, specify the array. If
your view data consists of child views created from
soup entries, specify the soup cursor.

index Only used if you specify an array of view templates for
what. This is the index of the child view template that is
currently displayed at the top of the parent view.

upDown Set to -1 to scroll up (visually, the views move
downward on the screen), or set to 1 to scroll down
(visually, the views move upward on the screen).

This method has different return values, depending on what you specify for
what. If you specify an array, this method returns a new array of the child

Functions and Methods

CHAPTER 2

Views Reference

views that are visible within the parent view after scrolling; or, if there is
nothing to scroll, ni | is returned. If you specify a cursor, this method always
returns ni | .

This method plays a “scroll up” or a “scroll down” sound effect, depending
on which way the views are scrolling. The sound effect should be stored in
the scrol | UpSound or scr ol | DownSound slot of the view, respectively.

A slot named hei ght is required in each of the child views (or soup entries,
if you are working with a cursor). This slot should contain the height of the
view in its normal (expanded) state.

A slot named i ndex is required in the view that receives the SyncScr ol |
message (the parent view). Initialize the i ndex slot to the index of the child
template that is at the top of the parent view when the view is first
displayed. Pass the i ndex slot for the index parameter to SyncScr ol | . The
SyncScr ol | method modifies this slot when it scrolls the views, so you
don’t need to keep track of the index. On each subsequent call to
SyncScrol |, pass the i ndex slot for the index parameter.

The following information applies only if you specify an array for what.

= This method uses two optional slots in the parent view: al | Col | apsed
and col | apsedHei ght . These slots control scrolling when the child
views have both expanded and collapsed modes. The al | Col | apsed slot
should hold a t r ue value if all child views are in the collapsed mode, or a
ni | value if all child views are not collapsed. The col | apsedHei ght
slot holds the standard, height, in pixels of a collapsed view.

= This method also uses one specific slot in each of the child views:
col | apsed. If there is a col | apsed slot in a child view, and it holds a
t r ue value, the individual child view is assumed to be in the collapsed
state.

The following information applies only if you specify a soup cursor for what.

= This method may or may not move the cursor forward or backward in the
soup. Scrolling does not always require advancing to the next or previous
view, in which case the cursor would not be changed. For example, a
single data item may be longer than the screen space allocated for it in a
view, and so tapping the scroll arrow should scroll the view rather than

Functions and Methods 2-51

2-52

CHAPTER 2

Views Reference

advance to the next data item. In this case, the soup cursor would not be
advanced since a new item need not be retrieved from the soup as a result
of scrolling.

» Before the scrolling animation is done and the views are redrawn, the
Vi ewSet upChi | drenScri pt message is sent to the view that is being
scrolled. The view being scrolled must use the
Vi ewSet upChi | drenScri pt method to recalculate its st epChi | dr en
array so that the correct views are displayed when they are redrawn by
the SyncScr ol | method.

Working With View Highlighting

These methods and functions are used to highlight a view.

Hilite

view: Hi | i t e(on)
Highlights or unhighlights a view.

on If non-ni | , the view is highlighted if it is not already
highlighted; if ni | , the view is unhighlighted.

This method always returns t r ue.

HiliteUnique

view: Hi | i t eUni que(on)
Highlights or unhighlights a single view in a group of views.

on If non-ni | , highlights the view; if ni |, the view is
unhighlighted.

This method always returns t r ue.

The view you specify will be the only view highlighted in its sibling group.
That is, any other child views of the same parent that happen to be
highlighted are unhighlighted, so that only a single view is highlighted at a

time.

Functions and Methods

CHAPTER 2

Views Reference

TrackHilite

view: TrackHi | i t e(unit)

This method is typically called from within a Vi ewCl i ckScri pt method. It
tracks the pen on the display, highlighting the view when the pen is within
its bounds, and unhighlighting the view when the pen is outside it.

unit The current stroke unit passed to the
Vi ewd i ckScri pt method.

This method returns t r ue if the pen is lifted within the view bounds or ni |
if the pen is lifted outside the view bounds.

This method repeatedly sends the But t onPr essedScri pt message to the
view while the pen is down and within the view bounds.

The display of electronic ink is turned off while the pen is tracked.

TrackButton

view: Tr ackBut t on(unit)

Performs the same operations as Tr ackHi | i t e, but protects against leaving
the button highlighted if an error occurs. (The button is unhighlighted if an
error occurs during the tracking.)

unit The current stroke unit passed to the
Vi ewd i ckScri pt method.

This function internally calls Tr ackHi | i t e. It returns non-ni | if the pen is
lifted within the view bounds or ni | if the pen is lifted outside the view
bounds.

Unlike Tr ackHi | i t e, however, this function sends the
Butt onC i ckScri pt message to the view if the pen is lifted within the
view bounds of the button.

Functions and Methods 2-53

2-54

CHAPTER 2

Views Reference

HiliteOwner

HiliteOaner ()

Returns the view containing highlighted data. If there is more than one view
containing highlighted data, the common parent of those views is returned.
However, only one application at a time can have highlighted data. This
function returns ni | if no views contain highlighted data. See “Determining
Which View Item Is Selected” (page 3-37) in Newton Programmer’s Guide for
information on using this function.

This function works only returns views of the class cl Edi t Vi ewor
cl Par agr aphVi ew

GetHiliteOffsets

GetHiliteOfsets()

Returns an array of arrays, containing information about views that have
highlighted data, even if only text from a single paragraph is selected. If you
have a mixed selection; that is, some shapes or sketches and some
paragraphs, this function returns nil.

The format is as follows:

[[viewl, startposl, endposl], [view2, startpos2, endpos?], ...]

In the above example, text from the first two paragraphs viewl and view2
have been selected. The views in this array are always cl Par agr aphVi ews.
In addition, you don’t need to use Hi | i t eOaner in conjunction with

GetH liteOfsets.

A view can have only one range of highlighted characters. Discontiguous
highlighting within a view is not supported. Only one application at a time
can have views with highlighted data; so all views returned by this function
belong to the same application.

This function works only with views of the class cl Par agr aphVi ew Other
kinds of views containing highlighted data (views of the class
cl Pol ygonVi ew for example) are not returned.

Functions and Methods

CHAPTER 2

Views Reference

SetHilite

view: Set Hi | i t e(start, end, unique)
Highlights some or all of the text in a view of the class cl Par agr aphVi ew

start The starting character position of the highlighting. A
character position of zero indicates the beginning of the
view, a position of 1 is after the first character, and so on.

end The ending character position of the highlighting.

unique A Boolean value. Specify non-ni | to make the specified
text the only highlighted text in the view; any other
highlighted text is unhighlighted. Specify ni | to allow
previously highlighted text to stay highlighted. In the
later case, the highlighting is extended to include the
newly specified highlighted text. Discontiguous
highlighting is not allowed.

This function returns t r ue, unless view is invalid, in which case ni | is
returned.

Creating View Dependencies

The following functions are used to make one view dependent on another.

TieViews

Ti eVi ews(mainView, dependentView, methodName)

Makes one view dependent on another so that when the main view changes,
it notifies the dependent view by sending a message to the dependent view.

mainView The main view.

dependentView The view that you want to be notified when mainView
changes.

methodName A symbol that is the name of the method to call in

dependentView when mainView changes. This method is
passed two parameters when it is called. The first

Functions and Methods 2-55

2-56

CHAPTER 2

Views Reference

parameter is a reference to the view that changed and
the second parameter is a symbol that is the name of the
slot that changed.

This function returns non-ni | if it successfully registers the dependent view
with the main view; otherwise, it returns ni | .

You can pass in the following special symbols (which are evaluated at run
time) for either the mainView or dependentView parameters:

= ' Vi ewFr ont Most, indicates the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewFl ags slot.

= ' vi ewFr ont Most App, indicates the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewF| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

= ' Vi ewFr ont Key, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

Here is an example of two views of the cl Par agr aphVi ewclass. Any text
entered in the first view is duplicated in the second:

mai nView : = {...
vi ewd ass: cl ParagraphVi ew,
vi ewFl ags: vVisi bl e+vd i ckabl e+vSt r okesAl | owed+
vGest ur esAl | owed+vChar sAl | owed,
Vi ewSet upFor nScri pt: func()
begi n
Ti eVi ews(mai nView, tieView, 'ltChanged);
end,
-
tieview:= {...
vi ewd ass: cl ParagraphVi ew,
vi ewFl ags: vVisi bl e,
I t Changed: func(view, slot)

begi n
| ocal newtext := viewtext;
setval ue(sel f, 'text, newtext);
end,

-}

Functions and Methods

CHAPTER 2

Views Reference

Synchronizing Views

The following two methods are used to synchronize views.

RedoChildren
view: RedoChi | dren()

Closes, then reopens and redraws, all of a view’s child views. This method
always returns t r ue.

As a result of the RedoChi | dr en message, the following system actions
occur:

1. The child views are sent Vi ewQui t Scri pt messages, and then they are
closed.

2. The parent view (the view to which you sent the RedoChi | dr en
message) is sent the Vi ewSet upChi | dr enScri pt message, and the
child templates are reread from the vi ewChi | dr en and st epChi | dren
slots of the parent view.

3. The child views are reopened, and in this process are sent the following
messages: Vi ewSet upFor nfScri pt, Vi ewSet upChi | drenScri pt,
Vi ewSet upDoneScri pt.

4. The parent view, and then the child views, are drawn and sent the
Vi ewDr awScr i pt message.

For more information about system messages, refer to “Application-Defined
Methods” (page 2-65).

Note that because the RedoChi | dr en method closes child views, any new
data that you have stored in those views during run time will be lost. For
example, if you have created a slot in a child view and stored a value in it,
that slot and value will be lost when the view is closed and reopened. The
view is reopened directly from its template, so of course, any data that was in
the view memory object in RAM is lost.

However, if a child view is declared in a view that is still open (typically the
parent view), then, even though the child view is closed, its view memory
object is not destroyed and any data stored in the view is preserved. This is
the same as when you send the Cl 0ose message to a declared view. For more

Functions and Methods 2-57

2-58

CHAPTER 2

Views Reference

information about declared views, see “View Instantiation” (page 3-26) in
Newton Programmer’s Guide.

Because the RedoChi | dr en method closes and reopens all child views, it is
relatively slow. If you know that some of the child views are still visible
within the parent, you can use SyncChi | dr en instead, which gives better
performance since it doesn’t close views that are still visible.

SyncChildren

view: SyncChi | dren()

Redraws all of a view’s child views, with their new bounds, if the bounds
have changed. This method always returns t r ue.

As a result of the SyncChi | dr en message, the following system actions
occur:

1. The Vi ewSet upChi | drenScri pt message is sent to the view to which
the SyncChi | dr en message was sent.

2. The child views are synchronized with the st epChi | dr en and
vi ewChi | dr en arrays of the parent view to which this message was sent.
If a view is no longer listed in the st epChi | dr en or vi ewChi | dr en
array, then the Vi ewQui t Scri pt message is sent to it and it is closed. If a
new view template is listed in one of these arrays, the new child view is
created and opened. As a result of its opening, the new view is sent the
usual messages: Vi ewSet upFor nmScri pt,
Vi ewSet upChi | drenScri pt, and Vi ewSet upDoneScri pt .

3. Internally, the system does a SyncVi ewfor each of the child views. As a
result, the Vi ewSet upFor nScr i pt message is sent to each child view,
and each view whose bounds has changed is redrawn.

Note that if a new child view is created, it receives the
Vi ewSet upFor nScr i pt message twice, once in step 2 and once in step 3.

The view to which you send the SyncChi | dr en message is not dirtied.
Usually this is not a problem, except in one case, in which you must send the
view the Di r t y message to cause it to be redrawn. If a child view is closed in
step 2 and another child view is not drawn completely over it, the old child
view will still be visible.

Functions and Methods

CHAPTER 2

Views Reference

Here is an example of using the SyncChi | dr en method:

{...
addOneChi | d: func(chil dTenpl at e)

begin

/1l ensure that stepChildren array is in RAM

if not HasSlot(self, 'stepChildren) then

sel f.stepChildren := Cone(self.stepChildren);

/] add new tenplate into the array

AddArraySl ot (sel f.stepChil dren, childTenplate);

/1 sync up the views

sel f: SyncChil dren();

end

-}

Laying Out Multiple Child Views

The following methods are used to layout multiple child views.

LayoutTable

view: Layout Tabl e(tableDefinition, columnStart, rowStart)

Generates a table where each cell is a child of the parent view to which this
message is sent. This method essentially calculates the bounds for each child
view so that the children are laid out in a table-like format in the parent.

tableDefinition A frame describing the table. The slots are described
later in this method description.

columnStart The column number of the cell that should be placed in
the upper-left corner of the parent view. Specify an
integer from zero (for the first column) to one less than
the total number of columns.

rowStart The row number of the cell that should be placed in the
upper-left corner of the parent view. Specify an integer
from zero (for the first row) to one less than the total
number of rows.

Functions and Methods 2-59

CHAPTER 2

Views Reference

This method returns an array of child templates that can be used as the value
of the st epChi | dr en slot in the parent template.

The vi ewBounds slots of the children are calculated so that the first child is
placed in the upper-left corner of the parent view. You can use the
columnStart and rowStart parameters to change which child is the first child.
By using these parameters to specify a different upper-left cell, you can
display just a portion of the entire table.

For example, to generate templates for all cells in a table, specify 0, 0 for
columnStart and rowStart. This places the top-left cell in the table in the
top-left corner of the parent view. This is illustrated in the first view shown
in Figure 2-2.

To offset the table upward and to the left, specify 1, 1. This places the second
cell in the second row in the top-left corner of the parent view. This is
illustrated in the second view shown in Figure 2-2. Note, however, that cells
are laid out sequentially beginning with the indicated cell. That is, cells 5
through 10 are all shown. The table isn’t simply shifted up and to the right.

Templates are not generated for cells that precede the starting cell. The first
template in the array returned by Layout Tabl e is the template for the first
cell indicated by columnStart and rowStart.

Figure 2-2 Layout Tabl e results

1 2 3 5 &

il) & K]

K] 9 e 10

10 11 12
The ooftzadrsrand The oofuwrzbsadand
mizr parameters are xmidiarTparameters are
setto00 sefto 1.1

2-60

Functions and Methods

CHAPTER 2

Views Reference

TableDefinition slots
t abAcr oss

t abDown

t abW dt hs

t abHei ght s

t abPr ot os

t abVal ues

t abVal ueSl ot

t abSet up

The number of columns in the table.
The number of rows in the table.

An integer giving the fixed width of the columns, in
pixels, or an array of column widths.

An integer giving the fixed height of the rows, in pixels,
or an array of row heights.

A reference to a template used in creating the child
views, or an array of references to templates. The array
elements are mapped to the table of views beginning at
the top-left cell of the table and continuing down the
first column, and then down the second column, and so
on. If there are fewer array elements than table cells,
after the last array element is mapped, the mapping
continues with the first element.

A value that is used as the value of each of the child
views. Alternately, an array of values that are mapped
to table cells as above.

A symbol naming the slot in each of the child views
where its view value (specified in t abVal ues) is
stored. (Remember to quote the symbol; as with

" t ext .) For example, if the table consists of child views
based on the cl Par agr aphVi ewclass, you would
specify ' t ext for this slot, since the value of a

cl Par agr aphVi ewis stored in the t ext slot.

A method that is called before each of the child views is
instantiated. It is passed three parameters: a reference to
the child template, its column number in the table, and
its row number in the table. This allows you to do
special initialization operations to each child view
before it is instantiated. This method must be passed the
context with the call.

Functions and Methods 2-61

2-62

CHAPTER 2

Views Reference

The following example of Layout Tabl e method shows the code used to
generate the first table in Figure 2-2:

(..

viewcl ass: cl Vi ew,
vi ewBounds: {left: 42, top: 26, right: 193, bottom 129},

t abAcross: 3,

t abDown: 4,

t abW dt hs: ni |

t abHei ghts: nil

t abProt os: {vi ewcl ass: cl ParagraphVi ew,
vi ewBounds: nil,
viewdustify: vjLeftH+vjCenterV+oneLi neOnly,
vi ewFl ags: vVisi bl e+tvC i ckabl e,
vi ewFormat : vfFillWhite+vfFraneBl ack+vfPen(1),
text:nil,
vi ewFont : si npl eFont 10},

tabval ues: nil,

tabval ueSlot: nil,

Vi ewSet upChi | drenScri pt: func()

begi n
| ocal box, cells;
box := self:local Box();

viewN dth := box.right - box.left;

tabwWdths := viewNdth DIV tabAcross;

t abHei ghts : = Font Hei ght (t abPr ot 0s. vi ewFont) ;

tabval ves := ["1", "2", "3", "4",6 "5" "6", "7", "8",
"9o", 6 "i0", "11", "12"];

tabVval ueSl ot := 'text;

sel f.stepChildren : = sel f:Layout Tabl e(self, 0, 0);
end,

H

Functions and Methods

CHAPTER 2

Views Reference

LayoutColumn

view: Layout Col unm(childViews, index)

In the view to which this message is sent (the main view), Layout Col um
displays a subset of views from a larger array of views.

childViews The array of views from which you want to display a
subset.
index The index of the view in the childViews array that you

want to display at the top of the view to which you send
this message.

This method returns a reference to an array of child views that fill the
bounds of the main view, beginning with the view at index and containing as
many subsequent views as it takes to fill the main view to the bottom. Each
child view must have a height slot that is set to the height of the view in
pixels.

Miscellaneous View Operations

This section describes other miscellaneous view methods and functions.

SetPopup

view: Set Popup()

After a view is shown, call this method to make the view a pop-up view (a
picker); that is, a view that gets closed on the next pen tap (whether inside or
outside of it). An example of using this feature is in the pr ot oPi cker view
proto (page 5-13).

This method always returns ni | .

Here’s how you would typically call this method in your view template:

vi ewSet upDoneScri pt: func()
sel f: Set Popup() ;

Functions and Methods 2-63

2-64

CHAPTER 2

Views Reference

GetViewFlags

Get Vi ewFl ags(template)

Returns the value of the vi ewFl ags slot in the view corresponding to the
specified template, or in the template itself, if its view has not yet been
instantiated.

template The template or view whose vi ewF| ags slot you want
to get.

You can pass in the following special symbols for the template parameter:

= ' Vi ewFr ont Most, indicates the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewFl ags slot.

= ' vi ewFr ont Most App, indicates the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

= ' Vi ewFr ont Key, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

These symbols are evaluated at run time.

Visible

Vi si bl e(view)

This function tests a view to see if it is visible or not. This function returns
non-ni | if the view is visible or ni | if the view is not visible. Note that a
view can be open but not visible, so this function is not a valid test of
whether a view is open.

view The view that should be tested to see if it is visible.
You can pass in the following special symbols for the view parameter:

= ' Vi ewFr ont Most, indicates the frontmost view on the screen that has the
vAppl i cati on flag set in its vi ewFl ags slot.

= ' vi ewFr ont Most App, indicates the frontmost view on the screen that
has the vAppl i cat i on flag set in its vi ewf| ags slot, but not including
floating views (those with VFI oat i ng set in their vi ewFl ags slot).

Functions and Methods

CHAPTER 2

Views Reference

= ' vi ewFr ont Key, indicates the view on the screen that accepts keys (there
can be only one view that is the key receiver).

These symbols are evaluated at run time.

ViewlsOpen

Vi e sOQpen(view) //platformfile function
Returns t r ue if the view is open and ni | if it is not.

IMPORTANT
This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kVi e sCpenFunc with (view);
A
view The view you wish to check.
Note that a view can be open but not visible (if it is hidden).

This function is a better way to check if a view is open, rather than checking
if the vi ewChj ect slotisnon-ni | .

Application—Defined Methods

The following subsections describe application-defined methods. When
using any of these methods, always calli nher i t ed: ?Vi ewXXXScri pt
when using protos or in case the present or future system software provides
such a method.

ButtonToggleScript

view: But t onToggl eScri pt (frontmostApp)

Lets the application perform special handling when its icon is tapped in the
Extras Drawer.

frontmostApp The base view of the application that is frontmost on the
screen.

Functions and Methods 2-65

2-66

CHAPTER 2

Views Reference

The value that the application returns from the But t onToggl eScri pt
method is important. It can return either ni | or non-ni | . A return value of
ni | means that the system should proceed with the normal operations that it
does when an icon is tapped. A value of non-ni | means that the system
should do nothing — the assumption being that the application handled the
icon tap in whatever way it wanted to itself.

ViewSetupFormScript

view: Vi ewSet upFor mScri pt ()

During view creation, this message is sent before any slots in the view
template are read. In this method, you can do any special initialization that
your view needs, including setting the value of any slots other than the

vi ewCl ass slot. For example, you can dynamically change the

vi ewBounds slot, the vi ewFl ags slot, the vi ewFont slot, and so on. Note
that you cannot perform any operations involving child views of your view
since they haven’t yet been instantiated at this point. (However, you can
manipulate the st epChi | dr en array at this point.) The return values is
unspecified.

This message is also sent during execution of the system view method
SyncVi ew before it begins its operations. It is sent during execution of the
global function Set Val ue (it calls SyncVi ewinternally), if you set the value
of one of these slots: vi ewBounds, vi ewFor mat, vi ewdusti fy, or

vi ewFont .

Here is an example of using this method:

Vi ewSet upFor nScri pt: func()
begi n
sel f.viewBounds := SetBounds(0, 15, 200, 180);
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

Functions and Methods

CHAPTER 2

Views Reference

ViewSetupChildrenScript
view: Vi ewSet upChi | drenScri pt ()

This message is sent after a view is created but before its children are
instantiated. In this method, you can do any special initialization that you
need to do before the child views are instantiated. For example, you might
want to dynamically set up the st epChi | dr en array, which controls what
child views are to be created. The return values is unspecified.

This message is also sent during execution of the following system view
methods before the child views are redrawn: SyncChi | dr en,

RedoChi | dren, and SyncScrol | (only if you pass a soup cursor for the
first parameter in SyncScrol |).

Here is an example of using this method:

Vi ewSet upChi | drenScript: func()
begi n
sel f.stepChildren := [pg4, pg5]; // child tenpl ates
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

ViewSetupDoneScript
view: Vi ewSet upDoneScri pt ()

This message is sent after all of the child views of the view are instantiated,
just before the view is displayed. Vi ewSet upDoneScr i pt is sent for
children before it is sent for the parents of the children. The return values is
unspecified.

Here is an example of using this method:
Vi ewSet upDoneScri pt: func()
begin

sel f: Set Popup() ;
end

Functions and Methods 2-67

2-68

CHAPTER 2

Views Reference

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

ViewQuitScript

view: Vi ewQui t Scri pt ()

This message is sent just before the view is closed. It gives you a chance to do
any processing or clean-up that you need to just before the view is closed.

Note that an undeclared view is destroyed when it is closed. A declared view
still exists, if the view in which it is declared is still open. A view can get
control after all of its children have been destroyed.

When a view is closing, this message is sent to the topmost view that is
closing as well as to all of the children of that view, since they too are closing
with it. That is, the first child view receives this message, then all of its
children, in order, and then the second child view receives this message, and
so on. For each child view, the message is sent recursively to all of its
children before the next top-level child is notified.

The child views are closed in reverse order. That is, the views at the bottom
of the hierarchy are closed first, then those above them, and so on, until the
original view receiving the Vi ewQui t Scri pt message is closed last.

If you return the symbol ' post Qui t from the Vi ewQui t Scri pt method of
a view, that same view will then be sent the Vi ewPost Qui t Scri pt
message after all of its child views have been destroyed. This allows you an
opportunity to do extra clean-up, if necessary. See Vi ewPost Qui t Scri pt
(page 2-69) for additional details.

Note that you can’t send any view messages to a view whose
Vi ewQui t Scri pt has already executed. If you do, the system throws an
exception.

Functions and Methods

CHAPTER 2

Views Reference

IMPORTANT

If you override the Vi ewQui t Scri pt of any proto, you
must return the value of the expression

i nherited: ?Vi ewQui t Scri pt. Otherwise, if there is a
Vi ewPost Qui t Scri pt method in the proto, it may not be
executed. Even if current protos don’t use the

Vi ewPost Qui t Scri pt feature, they may in the future. a

Here is an example of this method:

Vi ewQui t Scri pt: func()
begin
RenoveS| ot (Get Root (), ' busi nessFormat);
RenoveS| ot (Get Root (), ' nyAuxFormat);
i nherited: ?viewQuitScript();
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

ViewPostQuitScript
view: Vi ewPost Qui t Scri pt ()

This message is sent to a view following the Vi ewQui t Scri pt message and
after all of the view’s child views have been destroyed. This message is not
automatically sent to all views, but is sent only if the Vi ewQui t Scri pt
method returns the symbol ' post Qui t. See Vi ewQui t Scri pt (page 2-68)
for more information.

Note that when a view receives the Vi ewPost Qui t Scri pt message, it is
not actually a full-fledged view anymore, but only the remnants of its view
frame. This means that from within the Vi ewPost Qui t Scri pt method,
you can’t send any view messages to sel f ; however, the parent view is still
valid, so the children can still send messages to the parent view.

Functions and Methods 2-69

2-70

CHAPTER 2

Views Reference

ViewShowScript

view: Vi ewShowScri pt ()

This message is sent when the view is instructed to show itself; it is not sent
to any child views. This can occur as a result of the Show Open, or Toggl e

messages. When showing a view, the view system first shows the view and

then sends this message to allow you to perform any additional operations.
The return value is ignored.

Here is an example of using this method:

Vi ewShowScri pt: func()
begi n
/1 idle nmethod will close view after 5 seconds
: Set upl dl e(5000) ;
end

ViewHideScript

view: Vi ewHi deScri pt ()

This message is sent when the view is instructed to hide itself. This can occur
as a result of the Hi de, Cl ose, or Toggl e view methods. When hiding a
view, the view system first sends this message, then hides the view and all of
its child views. However, this message is not sent to any of the child views.
The return value is ignored.

This message is not always sent when a view is closed. Do not use this
method to do clean-up when a view is closing—use the Vi ewQui t Scri pt
method instead. The Vi ewQui t Scri pt message is sent immediately after
the Vi ewHi deScr i pt message when a view is being closed.

Here is an example of this method:

Vi ewHi deScri pt: func()
begi n
/1 open anot herVi ew when this one is hidden
anot her Vi ew. Open() ;
end

Functions and Methods

CHAPTER 2

Views Reference

ViewDrawScript

view: Vi ewDr awScri pt ()

This message is sent when the view is drawn. First the view system draws
the view, this message is sent, and the view frame and view highlighting (if
any) are drawn. This message is sent before any child views are drawn. If
you wish to augment the drawing done by the view system or to perform
other operations whenever the view is drawn, do it in this method.

If you want to draw in a view other than when the Vi ewDr awScr i pt
message is sent, use the DoDr awi ng view method, documented in “Drawing
and Graphics Reference” (page 10-1)

A WARNING

All coordinates in the vi ewBounds slot and the global
coordinates of the bounds, such as returned by G obal Box,
of a view must be within the range -32768 to 32767. If this is
not the case, the behavior of the views and view scripts are
undefined. a

Here is an example of using this method:

Vi ewSet upFor nScri pt: func()
/1 set up line objects and save themin the lines slot

begin
| ocal box;
box := sel f:Local Box();

sel f.lines[MakeLi ne(0, 0, box.right, box.bottom,
MakeLi ne(0, box.bottom box.right, 0)];
end

Vi ewDr awScri pt: func()
/1 draw an X in the view
begin
: DrawShape(sel f.lines, nil);
end

Functions and Methods 2-71

2-72

CHAPTER 2

Views Reference

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

ViewHiliteScript

view: Vi ewHi | i t eScri pt (on)

This message is sent just before the system is about to highlight or
unhighlight the view.

on A Boolean value that is non-ni | if the view is to be
highlighted or ni | if the view is to be unhighlighted.

The return values is unspecified, it is assumed that you have handled the
highlighting or unhighlighting operation, and the system won’t do it. If this
method returns ni | , the system performs the operation.

Note that you don’t have to use the DoDr awi ng method to draw in your
Vi ewHi | i t eScri pt method.

Here is an example of this method:

ViewH liteScript: func(on)

begi n
| ocal box;
box := self:Local Box();

r := MakeRoundRect (box. |l eft+3, 0, box.right-3,
box. bottom 4);
: DrawShape(r, {transferMde: nodeXor,
fillPattern: vfBlack});
true;
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

Functions and Methods

CHAPTER 2

Views Reference

ReorientToScreen

view: Reori ent ToScr een()

This message is sent to each child of the root view when the screen
orientation changes. It is sent to validate a view as supporting landscape or
rotation or it is sent to a view during rotation so that the view can adjust
itself appropriately. The return values is unspecified.

A WARNING

An application must have a Reor i ent ToScr een method in
order to be opened on a landscape screen. If a user tries to
open an application that doesn’t have this method, a slip is
displayed to give the user the option of not opening the
application at all or rotating the screen back to portrait
before it is opened. a

When the screen orientation changes, the system checks each child of the
root view to see if the Reor i ent ToScr een method exists. If this slot exists,
Reori ent ToScr een is sent to each child view and the rotation occurs. If it
doesn’t exist, a slip appears warning the user that some functions will not
show after rotation because they can’t operate while rotated. The slip
contains a “Cancel” and “OK” button. If the user taps “Cancel” the rotation
is cancelled and nothing happens. If the user taps “OK,” any view that
doesn’t implement the Reor i ent ToScr een method is closed and the
rotation occurs.

To support rotation, your application should implement this method in its
base view or any other view that will be a child of the root view.

Reor i ent ToScr een should resize, move, or close your application. The
easiest way to implement this behavior is take advantage of the default
function provided by the ROM by placing the function

ROM _Def Rot at eFunc in your Reor i ent ToScr een slot as in this example:

Reori ent ToScreen: ROM Def Rot at eFunc

If the view is offscreen, any vi ewbounds slot in the view frame is also
removed. This behavior restores the view to its default position if the user
has dragged it.

Functions and Methods 2-73

2-74

CHAPTER 2

Views Reference

A more sophisticated way of handling rotation in the Reor i ent ToScr een
method is to use the Get AppPar ans function to check the new screen
dimensions, and then resize and redisplay the base application view and all
child views, if necessary.

ViewScrollDownScript

view: Vi ewScr ol | DownScri pt ()

This message is sent when the view system receives a scroll down event,
which occurs when the user taps the downward-pointing scroll arrow. There
is no default view-system operation that occurs as a result of this event—
only this message is sent. Note that “scrolling down” means that visually the
items on the screen move upward, showing you new items that were
previously hidden “below” the bottom of the view.

Only a view with the vAppl i cat i on flag set in its vi ewFl ags slot can
receive this message.

Here is an example of this method:

Vi ewScr ol | DownScript: func()

begi n
if index < length(notes)-1 then
begi n
roll:SyncScroll(notes, index, 1); // 1 = down
i ndex := index + 1;
end
end

ViewScrollUpScript

view: Vi ewScr ol | UpScri pt ()

This message is sent when the view system receives a scroll up event, which
occurs when the user taps the upward-pointing scroll arrow. There is no
default view-system operation that occurs as a result of this event—only this
message is sent. Note that “scrolling up” means that visually the items on the

Functions and Methods

CHAPTER 2

Views Reference

screen move downward, showing you new items that were previously
hidden “above” the top of the view. The return values is unspecified.

Only a view with the vAppl i cat i on flag set in its vi ewFl ags slot can
receive this message.

Here is an example of this method:

Vi ewScrol | UpScript: func()

begin
if index > 0 then
begin
roll:SyncScroll (notes, index, -1); [/ -1 = up
index := index - 1;
end
end

ViewOverviewScript

view: Vi ewOver vi ewScri pt ()

This message is sent when the view system receives an overview event,
which occurs when the user taps the overview dot between the scroll arrows.
There is no default view-system operation that occurs as a result of this
event—only this message is sent. The return values is unspecified.

Usually the overview button is used to toggle between two views of the data
in an application: a close-up (normal) view, and an overview view.

Only a view with the vAppl i cat i on flag set in its vi ewFl ags slot will be
sent this message.

Here is an example of this method:

Vi ewOvervi ewScript: func()

begin
if (cardPrefs.nmode = noded oseUp) then
cardPrefs. nbde : = nodeOvervi ew

Functions and Methods 2-75

2-76

CHAPTER 2

Views Reference

el se
cardPrefs. mode : = nodeCd oseUp;
cl oseUp: Toggl e();
over Vi ew. Toggl e();
stat us: RedoChi l dren();
end

ViewAddChildScript

view: Vi ewAddChi | dScri pt (child)

This message is sent when a child is about to be added to a view of the
cl Edi t Vi ewclass.

child The child template to use to create the child view.

This method gives you a chance to create and add the child view, or to do
some other processing before the view is created and added automatically.

If this method returns non-ni | , it is assumed that you have added the child
view entry to your view’s st epChi | dr en array and have created the child
view. If this method returns ni |, these things are done for you.

In any case, a view must be instantiated from the template passed to this
method—either by you or by the system. If you return non-ni | , and fail to
instantiate the view, the system displays an error message, because it expects
the view to exist.

Here is an example of using this method:

Vi ewAddChi | dScript: func(child)
begi n
AddToDef aul t St or e(mySoup, child);
AddUndoAction(Kill Addition, [child]);
AddVi em nyVi ew, child);
end

Functions and Methods

CHAPTER 2

Views Reference

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

Use this method if you have a c| Edi t Vi ewthat is creating paragraph and
polygon child views with the vNoScr i pt s flag set, and you want to
override the vi ewF| ags slot to remove the vNoScr i pt s flag.

ViewChangedScript

view: Vi ewChangedScri pt (slot, view)

This message is sent when the value of a slot in the view is changed as a
result of the Set Val ue function, or as a result of other view operations such
as changing the bounds, changing the contents or the text style, and so on.
The return values is unspecified.

slot A symbol that is the name of the slot whose value
changed.
view The view that slot resides in.

Here is an example of this method:

Vi ewChangedScri pt: func(slot, view)

begin
if slot = "text then

textChanged := true; //set flag if text was changed
end

ViewDropChildScript
view: Vi ewDr opChi | dScri pt (child)

This message is sent when a view of the cl Edi t Vi ewclass is about to
remove a child view.

child The child view to remove.

Functions and Methods 2-77

2-78

CHAPTER 2

Views Reference

This method gives you a chance to remove the child view entry from your
view’s vi ewChi | dr en array, or to do some other processing before the view
is removed.

The return values is unspecified, it is assumed that you have removed the
child view entry from your vi ewChi | dr en array. If this method returns

ni |, this is not assumed and it is done for you. In either case, the child view
itself is deleted for you by the system. (Note that you can use the

RenoveVi ew function to delete the view yourself.)

Here is an example of this method:

Vi ewDr opChi I dScri pt: func(child)
begi n
Ent r yRenoveFr onSoupXmi t (chil d, kAppSynbol) ;
base: RedoChi I dren();
nil;
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
method. O

ViewldleScript

view: Vi e dl eScri pt ()

When an idler is installed for a view, this message is sent repeatedly and at
regular intervals when the view is open, to allow you to do periodic tasks
such as polling a network for information or updating a clock on the display.

You install an idler for a view by sending it the Set upl dl e message, which
specifies an initial delay after which the Vi ewl dI eScri pt message is sent.
The Vi ew dl eScri pt method returns an integer which specifies the delay,
in milliseconds, until it is called again. For example, to have the system call

this method every second, you should return 1000.

Functions and Methods

CHAPTER 2

Views Reference

To stop idling, you can return the value ni | , or you can send the view the
Set upl dl e message with a value of zero.

There is no default view-system operation that occurs during idling—only
the Vi ewl dl eScri pt message is sent.

Note

When you install an idler for a view, the time that the

Vi e dl eScri pt message will next be sent is not
guaranteed to be the exact interval you specify. This is
because the idler may be delayed if a method is executing
when the interval expires. The Vi ewl dl eScri pt message
cannot be sent until an executing method returns.

Do not install idlers that use repeated intervals of less than
100 milliseconds. O

Here is an example of this method:

Vi ewShowScript: func() // initialize blinking sequence
begin
i con := onBitmap;
sel f.nunmBlinks := 0;
sel f:Setupldle (750); // start in 3/4 second
end

View dl eScript: func()

begin
if icon = onBitmap then
i con := of fBitmap;
el se begin
i con := onBitnmap;
nunBlinks := nunBlinks + 1;
end;
self:Dirty();

if nunBlinks < 4 then // blink 4 tines
return 750; // return time until next blink

Functions and Methods 2-79

2-80

CHAPTER 2

Views Reference

nunBlinks := 0; // else return O to stop blinking
end

This example blinks an icon in a view of the cl Pi ct ur eVi ewclass when the
view is shown.

Be careful not to send this message too frequently for long periods of time
(for example, many times each second for a few minutes). This causes the
Newton hardware to consume significantly more power than usual and
reduces battery life.

Note

The system searches for this method only in the current view and its protos.
The parent chain is not searched for the method. ©

ViewDrawDragDataScript

sourceView: Vi ewDr awDr agDat aScr i pt (bounds)
bounds The bounds that were passed to Dr agAndDr op.

If supplied, this method draws the image that will be dragged. The default
(if this method is missing) is to use the area of the screen inside the rectangle
defined by bounds parameter to Dr agAndDr op.

This method returns a Boolean value. Returning non-ni | means that this
method handled the drawing. Returning ni | means that the default
behavior should take place.

ViewDrawDragBackgroundScript

sourceView: Vi ewDr awDr agBackgr oundScr i pt (bounds, copy)
bounds The bounds parameter as passed to Dr agAndDr op.
copy The copy parameter as passed to Dr agAndDr op.

If supplied, this method draws the image that appears behind the dragged
data. The default (if this method is missing or if it returns ni |) is to use the
bitmap of the area inside the rectangle defined by bounds XORed with the

Functions and Methods

CHAPTER 2

Views Reference

bitmap from Vi ewDr awDr agDat aScr i pt . Note that the XOR happens only
if copy is nil.

This method returns a Boolean value. Returning non-ni | means that this
method handled the drawing. Returning ni | means that the default
behavior should take place.

ViewGetDropTypesScript
destView: Vi ewGet Dr opTypesScri pt (currentPoint)

Returns an array of symbols; that is, the data types accepted by the view at
the location currentPoint. For example, ' t ext or' pi ct ur e. The array is
sorted by priority (preferred type first). This method can returnni |,
meaning no drop is allowed at the current point.

currentPoint The current pen position in global coordinates (a frame
containing x and y slots).

ViewFindTargetScript

destView:Vi ewFi ndTar get Scri pt (draginfo)

Lets the destination view redirect the drop to a different view.
Vi ewFi ndTar get Scri pt returns a view frame of the view that gets the
drop messages. It is called right after the Vi ewGet Dr opTypesScri pt .

draglnfo An array of frames (one frame per dragged item). See
Dr agAndDr op (page 2-46) for a list of approved slots.

ViewDropApproveScript

sourceView:Vi ewDr opAppr oveScr i pt (destView)

Provides a way for the sourceview to disallow dropping onto a particular
view. Vi ewDr opAppr oveScr i pt returns ni | if the drop shouldn’t happen,
and non-ni | if the drop should happen. It is called only if the drop types
match up with the dragged data and the destView, and is called right before
the Vi ewDr opScri pt, Vi ewDr opMoveScri pt and/or

Vi ewDr opRenpveScri pt methods are called.

destView Destination view in which the dropping will occur.

Functions and Methods 2-81

2-82

CHAPTER 2

Views Reference

ViewDragFeedbackScript

destView: Vi ewDr agFeedbackScri pt (draginfo, currentPoint, show)

Allows a view to give visual feedback while items are dragged over it.

draginfo The same parameter passed to Dr agAndDr op
(page 2-46).
currentPoint The current pen position in global coordinates (a frame

containing x and y slots).

show A Boolean value indicating whether to show or hide the
feedback. Specify non-ni | to show the feedback or ni |
to hide it. Hiding the feedback means erasing any
highlighting drawn when show is non-ni | , so the view
appears normally.

This method returns a Boolean value. Returning non-ni | means that the
method did draw. Returning ni | means that no feedback was drawn, so this
method does not need to be called again with show ni | at the point
dragPoint. The return value is ignored if show is ni | .

This method is always called with show set to ni | after it’s called with show
set to non-ni | . This action ensures that your function is called twice for
every “point” being dragged. An example use is drawing your drag
feedback with the XOR drawing mode. By calling

Vi ewDr agFeedbackScr i pt a second time, the view can ensure that it was
using the dragPoint when drawing and can XOR the exact image onto the
screen again. The screen will then show the original pixels.

Alternately, if no “drawing” occurred during Vi ewDr agFeedbackScri pt,
return ni | and the script won’t be called again.

Note that XORing is not required as a draw mechanism. The view might be
saving part of the screen to an offscreen bitmap and drawing feedback. Then
when asked to hide the feedback (show is set to ni |), it could restore the
original image from the offscreen bitmap.

Functions and Methods

CHAPTER 2

Views Reference

ViewGetDropDataScript
src: Vi ewGet Dr opDat aScri pt (dragType, dragRef)

Called when a destination view that accepts all the dragged items is found.
Vi ewGet Dr opDat aScri pt is called for each item being dragged.

dragType The type accepted by the destination view for this
particular item as passed to Dr agAndDr op in the
dragInfo array.

dragRef The drag reference for this item as passed to
Dr agAndDr op in the draglnfo array.

Vi ewGet Dr opDat aScri pt returns a frame containing the actual data to be
dropped into the destination view. This data could be any frame (not
necessarily a view). The frame should contain a t ext slot if the required
typeis' t ext, a poi nt s slot if the required type is ' pol ygon, an ink slot if
the required type is' i nk, or ani con slot if the required type is ' pi ct ure.
For pol ygon, i nk, or pi ct ur e types, the frame should also contain a

vi ewBounds slot in the src view coordinates.

If the dragged item is a view—that is, the view slot was set in the dr agType
array element passed to Dr agAndDr op—the default behavior occurs by
returning a frame with the necessary slots unless the

Vi ewGet Dr opDat aScri pt returns a non-ni | value.

If you want to drag system data types to or from a plain view, use these
formats for the built in types:

dragType RequiredSlots Optional slots

‘text text any other cl Par agr aphVi ewslots
vi ewBounds

' pol ygon poi nt s any other cl Pol ygonVi ewslots
vi ewBounds

"ink i nk any other cl Pol ygonVi ew slots
vi ewBounds

"picture icon any other cl Pi ct ur eVi ew slots
vi ewBounds

Functions and Methods 2-83

2-84

CHAPTER 2

Views Reference

Note

The vi ewBounds slot is no longer necessary for text type.
However, if the vi ewBounds slot exists, it will be used. O

ViewDropScript

destView: Vi ewDr opScri pt (dropType, dropData, dropPt)
This message is sent to the destination view for each dragged item.

dropType One of the types that the destination view returns from
the Vi ewGet Dr opTypesScri pt method.

dropData The frame that the source view returns from the
Vi ewGet Dr opDat aScri pt method. If this frame has a
vi ewBounds slot, this slot is converted to be in
destination view coordinates before calling
Vi ewDr opScri pt .

dropPt The last stroke point in global coordinates (a frame
containing X and y slots).

This method returns a Boolean value. Returning non-ni | means that this
method handled the drop. Returning ni | means that the drop is not
accepted.

Note that this method posts an undo action, if necessary.

ViewDropMoveScript

sourceView: Vi ewDr opMoveScri pt (dragRef, offset, lastDragPt, copy)

This message is sent for each dragged item when dragging and dropping in
the same view. (In this case, Vi ewGet Dr opDat aScri pt and
Vi ewDr opScr i pt messages are not sent.)

dragRef The drag reference for this item (as passed to
Dr agAndDr op in the draginfo array).

offset A frame with x and y slots indicating the horizontal and
vertical offsets of the item.

Functions and Methods

CHAPTER 2

Views Reference

lastDragPt The last stroke point in global coordinates (a frame
containing X and y slots).

copy The copy parameter as passed to Dr agAndDr op.

This method returns a Boolean value. Returning non-ni | means that this
method handled the move. Returning ni | means that the move was not
done.

Note that this method posts an undo action if necessary.

ViewDropRemoveScript

sourceView: Vi ewDr opRenpveScr i pt (dragRef)

This message is sent for each dragged item when the copy parameter to
DragAndDropisni | .

This method removes the item from the source view.

dragRef The drag reference for this item (as passed to
Dr agAndDr op in the draglnfo array).

This method returns a Boolean value. Returning non-ni | means that this
method handled removing the item. Returning ni | means that the remove
operation was not done.

Note that if you are using your own drop types and your own scripts, an
undo action must be added to this method for this part of the operation.

ViewDropDoneScript
destView:Vi ewDr opDoneScri pt ()

Sent at the very end of each drag and drop to let the destination view know
that all specified items have been dropped or moved.

Functions and Methods 2-85

CHAPTER 2

Views Reference

View Warning Messages

The warnings in Table 2-7 are printed to the inspector when a NewtonScript
application calls a view method in situations where the requested operation
is unwise, unnecessary, ambiguous, invalid, or just a bad idea. The function
or method typically does nothing other than print this warning message, but
such messages point out situations where code needs to be changed since
these calls may very well not be supported in the future.

In the future, you might get an exception thrown instead of just this error
message, or something more serious could occur since the problem might not
be detected.

If the global variable noEvi | Li veOn is set to t r ue, a breakloop is entered,
which helps to find out exactly which view is causing the problem. Setting
noEvi | Li veOn also causes other “incompatibility” errors to enter a
breakloop.

Table 2-7 View warning messages

Error number

4711

4712

4713

4714

4715

2-86

Message

Renove[St ep] View was call ed while the parent view
was bei ng opened or closed

Renmove[Step] View was called with a tenplate instead
of a view frane

Renove[St ep] Vi ew was call ed on a view whi ch was
bei ng opened or cl osed

Renove[Step] View was called with a read-only
stepChildren array (i.e., the view wasn't
previously added with AddVi ew)

Close() was sent to a view which was opening or
cl osi ng

View Warning Messages

CHAPTER 2

Views Reference

Table 2-7 View warning messages
Error number Message
4716 Toggl e() was sent to a view which was opening or
cl osi ng
4717 Toggl e() was sent to a view whose parent was bei ng
opened or cl osed
4718 Show() was sent to a view which was openi ng or
cl osing
4719 H de() was sent to a view which was opening or
cl osi ng
4720 RedoChi I dren() was sent to a view which was opening

or closing

4721 SyncChildren() was sent to a view which was openi ng
or closing

4722 Set KeyView() was sent to a view that wasn't a
cl ParagraphVi ew

View Warning Messages 2-87

CHAPTER 3

NewtApp Reference

This chapter describes the NewtApp framework data types and prototypes
(protos). The protos are divided into the following categories:

= general application protos
= slot view protos

= labelled input-line protos

Required Code

This section describes the required | nst al | Scri pt and RenbveScri pt
functions.

Required InstallScript and RemoveScript Functions

A NewtApp application has required | nst al | Scri pt and RenpveScri pt
functions that you must include in your application build so it can register

Required Code 3-1

CHAPTER 3

NewtApp Reference

properly for various system services. You may copy these functions directly
from the following code:

Install Script := func(partFrane)
begi n
part Frane. renoveFrane : = (partFramne.theForm:
Newt | nstal | Scri pt (part Frane. t heForn;
end;
RemoveScri pt : = func(partFrane)
begi n

(part Frame. renoveFr ane) : Newt RemoveScri pt (r emoveFr ane) ;
end;

General Application Protos

3-2

Included in this section are

= data storage proto newt Soup

= base view proto newt Appl i cati on
= base view control protos

= layout protos

= entry view protos

newtSoup

This is the abstract proto (in other words, it has no visible component) that
contains soup-handling routines. Soup definitions in a NewtApp application

General Application Protos

CHAPTER 3

NewtApp Reference

must be based on the newt Soup proto, and are set up in the
newt Appl i cati on.al | Soups slot (page 3-10).

Slot descriptions
soupName

soupl ndi ces

soupQuery

Required. This should be a string that is unique to your
application. If the application has only one soup, you
can use a string version of your application symbol, for
example, " MyApp: SI G'.

For an application that uses more than one soup, you
can add a prefix to a string version of the application
symbol, so the soup name becomes something like
"00: MyApp: SIG'.

An array of frames in which you define the indices for
your soup. An index can be based on a single slot in the
entry, or multiple slots in the entry. See the “Data
Structures” (page 9-1) for more information about how
to define a valid index. Here is an example:

soupl ndi ces:
[
{structure: 'slot,
path: 'title,
type: 'string},

{structure: 'slot,
pat h: 'tinmeStanp,
type: 'int},

{ structure: '"multislot,
path: ['labell, 'label2],
type: ['string, '"int] }
]

Required. A soup query. Currently you cannot define a

t ags slotor aval i dt est method in the soup query.
The soup query can include everything else; that is,

General Application Protos 3-3

CHAPTER 3

NewtApp Reference

soupDescr

def aul t Dat aType

AddEntry

Begi nKey, EndKey, i ndexVal i dTest, words, and
text. Here are a few examples:

soupQuery: {type: 'index,
i ndexPath:'title}

soupQuery: {type: 'index,
i ndexPat h: ' ti neSt anp,
Begi nKey: tinmel, EndKey: tine2}

soupQuery: {words: ["Newton", "New App"]}

Optional. A string describing the soup.

Optional. (This slot pertains to applications that use
stationery.) A unique symbol naming a data type for
your soup entries. You may reuse your application
signature as a value for this slot. An example is

' | Basi cCar d: si g| . If an entry adopted from
stationery does not already have a type defined (in its
cl ass slot) it is assigned this value.

myNewtSoup: AddEnt r y(entry, store)

Adds the entry to the specified store. If no store is given the entry is added to
the default store. The return value is unspecified.

entry

store

The entry to add. The only valid entries are those
returned by the various cursor and entry methods.

The result of a call to Get Def aul t St or e or

Get St or es—naming the device on which to store data.
Avalue of ni | causes the entry to be added to the
default store.

General Application Protos

CHAPTER 3

NewtApp Reference

AdoptEntry

myNewtSoup: Adopt Ent r y(entry, type)

Returns a soup entry frame with the values in the entry frame. This new
entry consists of the frame specified in the Cr eat eBl ankEnt r y method,
which you define in the newt Appl i cati on. al | Soups slot, and—if your
application has a dataDef—an entry defined in either a Fi | | NewEnt ry or
MakeNewEnt r y method. Note that if Fi | | NewEnt r y exists,

MakeNewEnt r y is not called.

entry Required. If ni |, a blank entry is created. The new entry
is based on this entry.

type Optional. Defaults to ni | . If the value is t r ue, the
method looks for the value of the cl ass slot of this
entry. See Chapter 5, “Stationery,” in Newton
Programmer’s Guide, for more information on the class
slot.

The cl ass slot and other slots of the dataDef entry are preserved as the
entry is added to the application soup. If an entry is provided with a cl ass
slot, the type is automatically set to the same value as the ¢l ass slot. If the
value of the type parameter is ni | and there is no cl ass slot, the value of the
def aul t Dat aType slot, which is set in the newt Soup definition, is used to
set the t ype and cl ass slots for the entry.

CreateBlankEntry

myNewtSoup: Cr eat eBl ankEnt ry()

Returns a blank entry. Override this method to create the necessary structure
of your soup. You may or may not want to put a cl ass slot in your soup
entry. However, note that any routable item must have one. (For more
information about how the cl ass slot is used, see Chapter 21, “Routing
Interface,” in Newton Programmer’s Guide.)

General Application Protos 3-5

3-6

CHAPTER 3

NewtApp Reference

DeleteEntry

myNewtSoup: Del et eEnt r y(entry)

Removes an entry from its soup. The entry frame is converted to a plain
frame (which is unmarked as belonging to a soup).

entry The entry to remove from the soup.

DuplicateEntry

myNewtSoup: Dupl i cat eEnt r y(entry, store)

Clones and returns the specified entry. The duplicate entry is stored on the
specified storage device.

entry The entry to be duplicated.

store The result of a call to Get Def aul t St or e or
Cet St or es—naming the device on which to store data.
Avalue of ni | causes the entry to be added to the
default store.

DoneWithSoup

myNewtSoup: DoneW t hSoup(appSymbol)

Unregisters both the soup changes and the union soup to which the
newt Soup you sent this message belongs.

appSymbol A constant value specifying a unique alphanumeric
symbol by which the application identifies itself to the
system. An example of a suitable value is' | Sanpl e
newt App: DTS]| .

FillNewSoup

myNewtSoup: Fi | | NewSoup()

Called by MakeSoup to add soup values to a new soup. The return value is
unspecified. You should define this method with soup values appropriate to
your application. A typical use of this method is to create “starter” entries for

General Application Protos

CHAPTER 3

NewtApp Reference

anew soup. If this is the desired behavior, you must create the entries and
add them to the soup.

GetAlias
myNewtSoup: Get Al i as(entry)

Returns an entry alias. This alias represents the specified soup entry—for fast
access later—without holding on to the actual entry. The entry alias can be
used later as input to the Got 0Al i as function to retrieve the soup entry. See
“Entries” beginning on page 11-17 in Newton Programmer’s Guide for more
information.

entry The soup entry to which this method creates a an alias.

GetCursor
myNewtSoup: Get Cur sor ()

Returns the cursor set up for the soup named within the al | Soups slot of
the newt Appl i cat i on proto.

GetCursorPosition

myNewtSoup: Get Cur sor Posi ti on()

Returns an alias to the cursor entry.

GotoAlias

myNewtSoup: Got oAl i as(alias)

Returns the soup entry referenced by the specified alias. Returns ni | if the
entry cannot be retrieved. When this error occurs, typically it is because the
original store, the original soup, or the original entry cannot be found.

alias The entry alias for which this method retrieves the
corresponding soup entry.

General Application Protos 3-7

3-8

CHAPTER 3

NewtApp Reference

MakeSoup

myNewtSoup: MakeSoup(appSymbol)

Used by the newt Appl i cat i on proto to return and register a new soup. It
assumes the soup is a standard union soup. If the soup is a new soup, it’s
filled with values by a call to Fi | | NewSoup. Override this method to
implement different behavior.

appSymbol A constant value specifying a unique alphanumeric
symbol by which the application identifies itself to the
system. An example of a suitable value is' | Sanpl e
newt App: Pl EDTS]| .

Query

myNewtSoup: Quer y(querySpec)

Message you send to a newt Soup to perform a query on the soup. It returns
a cursor that references a set of soup entries.

The querySpec frame may include the slots st r uct ur e, pat h, t ype, and
t agSpec. For more information on queries, see “Queries” (page 11-10) in
Newton Programmer’s Guide.

SetupCursor

myNewtSoup: Set upCur sor ()

Creates or resets the cursor as specified by the quer yspec in the
soupQuery slot.

newtApplication

The application base view template for all NewtApp applications. In an
application, this proto contains the application-wide elements like the folder
tab bar and status bar. It also contains references to all the layout protos and
sets up the application soup.

General Application Protos

CHAPTER 3

NewtApp Reference

Handlers for application-wide events like scrolling and filing are defined in
this proto. It also dispatches the information to the appropriate parts of the

application.

You must define the slots marked as required. Many of these contain strings
that describe objects for menus or are used in alerts and notification slips.

Slot descriptions
appSynbol

title

appObj ect

appAl |

about I nfo

{
tagLi ne: “*,

ver si on: ,
copyright:

Required. A constant value that specifies a unique
alphanumeric symbol by which the application
identifies itself to the system. An example of a suitable
valueis' | | OU: Pl EDTS]| .

If you use NTK as your development environment, the
application symbol is constructed for you from values
you set in the Output Settings dialog box for that
application.

Required. A string that names your application. It is
used by the system. An exampleis"Rol | Starter".

Required. An array of two strings, in both the singular
and plural, describing the data objects in the application
soup. These strings are used by the system in the filing
and action menus and for setting up soups. An example
is["Ox"," Oxen"].

Required. A string used in the folder tab picker (pop-up
menu) to provide the Al | items option. For example, the
value of the appAl | slot in the built-in Notes
applicationis " Al | Not es".

Optional. Defines information about your application
that appears when the user chooses About from the
newt | nf oBut t on (page 3-23). To use, create a slot in
your application’s base a called about | nf o and place a
frame in this slot with the following slots:

/1 A tagline for your application
/1 The version nunber for the application
, [/ Copyright infornmation

General Application Protos 3-9

3-10

CHAPTER 3

NewtApp Reference

t radenmar ks:

}

about Vi ew

al | Soups

al | Layout s

“ow

, I/ Trademark information

Optional. Defines information about your application
that appears when the user chooses About from the
newt | nf oBut t on (page 3-23). To use, create a slot in
your application’s base view called about Vi ew Use the
Get Layout function to place a template of your view in
this slot. A view is then created from the specified
template when the user taps About in the

newt | nf oButt on.

Required. Define the soup(s) for your application in this
frame. Your soup definition should consist of a frame
based on the newt Soup proto (page 3-2) containing the
slots soupNane, soupl ndi ces, and soupQuery. An
optional soupFi | t er slot supports filing.

Following is a sample al | Soups frame:

al | Soups: {
nmySoup: {

_proto: new Soup,
soupNanme: " M/Soup: SI G',
soupl ndi ces: [],
soupQuery: {type: 'index},
Creat eBl ankEntry: func()

{ slotl: 123,

slot2: 456, }

}

Note that each layout is tied to one of these soups by
using the soup name(s) in its mast er SoupSl| ot .

Required. A frame that contains references to the
application’s layouts. Two slots are required: def aul t

General Application Protos

CHAPTER 3

NewtApp Reference

and over vi ew These slots must contain paths to
existing layout files.

A suitable definition for the al | Layout s frame follows:

al | Layout s:
{def aul t: Get Layout (" Def aul t Layout Fi | e"),
overvi ew. Get Layout (" Overvi ewLayout Fil e"),

}

scrol | i ngEndBehavi or

Optional. Defaults to ' beepAndW ap. You may also set
it to the values ' wr ap, ' st op,' beepNW ap, or
' beepAndsSt op.

The values select how scrolling is handled at the end of
a view. ' wr ap causes scrolling to display from the last
entry around to the first (or vice versa). ' st op means
that scrolling stops when the display reaches either end.
' beepAndSt op means the application will stop at the
last entry and play a beep. ' beepNW ap means to
continue scrolling past the last entry, and play a
scrolling sound and "wrap" to the first entry.

Each scrolling choice comes in a quiet and noisy form. If
you choose the noisy version, it makes an extra scrolling
sound.

scrol | i ngUpBehavi or

st at usBar Sl ot

Optional. Defaults to ' bot t om You can set it to either
"topor' bottom

These settings select how roll-style entries are displayed
when scrolling up. For instance, say you scroll
backwards to a note that is two screens high; you’ll see
either the bottom or top screenful of the note. A
roll-style application would use ' bot t om but an
application that uses information slips would use ' t op.

Optional. A symbol that is the declared name of the
status bar. It is used by the layout to govern the
appearance/ disappearance of buttons on the status bar.
For this to work, the layouts must also have

General Application Protos 3-11

3-12

CHAPTER 3

NewtApp Reference

menuLef t But t ons and menuRi ght But t ons slots.
See newt St at usBar NoCl ose (page 3-29) and
newt Layout (page 3-32), for more information.

The following slots are used to create and save preferences.

Slot descriptions

prefsVi ew Optional. Contains a template of your preferences slip
and is opened when the user selects Prefs in the
newtApp.

t heApp Optional. Adds a reference to the application’s base

view, the default newtAboutBox.

The following slots are important if you are incorporating stationery into
your application:

Slot descriptions

al | Dat aDef s Required if your application supports stationery. A
frame that contains the symbol(s) identifying the
dataDef(s) and a reference to the file(s) containing the
data definition(s) for this application. Following is the
al | Dat aDef s slot of the Basic Card example:

{| basicCard: SIG: CetLayout("iouDataDef")}

The system automatically registers all dataDefs in this
frame when the application installs. For more
information about dataDefs, see Chapter 5, “Stationery,”
in Newton Programmer’s Guide.

al | Vi ewDef s Required if your application supports stationery. This
frame contains the unique dat aDef symbol(s), which
are registered in the base view al | Dat aDef s slot, and
the references to the layout files for the viewDef(s),
which can display their data. The following example

General Application Protos

CHAPTER 3

NewtApp Reference

super Synbol

contains two viewDef template references for the
default and notes layout files:

{1y sl g:
{defaul t:
Get Layout ("i ouDef aul t Vi ewDef "),
not es:
Get Layout ("i ouNot esVi ewDef "), }}

The system uses this slot to register the view formats for
each given dat aDef .

Required for stationary. A unique symbol that identifies
the superset of data defs used for this application. It is
recommended that you set it to the value of the
application symbol if the application has only one
dataDefs. For instance, assuming one data type for the
application, both your application symbol and

super Synbol couldbesetto'| 1 QU SI § .

Note that any would-be stationery extensions to this
application must also have a super Synbol that
matches this value.

Following are the routing, filing, and find slots:

Slot descriptions
doCar dRout i ng

dat eFi ndSl| ot

routeScripts

Optional. Defaults to t r ue. This enables the filing
interface to allow moves to and from cards. Set to
" onl yCar dRout i ng for filing to cards without folders.

Optional. Enables your application to be used in a
dat eFi nd query. Set it to a path expression that
evaluates to a slot in your soup entry that contains a
date. This slot must be indexed in the

newt Appl i cati on. al | Soups slot. An appropriate
valueis' ti meSt anp.

Optional. Contains default route scripts for Delete and
Duplicate. If you do not want these options to show in

General Application Protos 3-13

3-14

CHAPTER 3

NewtApp Reference

the Action menu, you must override the default
rout eScri pts array.

The following slots are included for your information only and should not be
set by you. They are maintained automatically by the NewtApp framework

code.

Slot descriptions
| abel sFilter

newt AppBase

retarget Chain

target Vi ew

Created dynamically as needed by the system, it is used
to store filing settings by the newt Appl i cat i on proto.

This identifies the base view of your application. The
system uses the value of newt AppBase to identify, for
instance, which view should be closed when a close box
is tapped.

This contains a dynamically built array of views
contained by (or chain out from) a particular view.
When the base container view is changed and redrawn,
these views are also updated.

This is the view in which data from the target entry is
displayed.

tar get This usually points to the entry being displayed and is
used by system services such as filing.

| ayout This is set to the current layout.

GetAppPreferences

myNewtApplication: Get AppPr ef er ences()

Returns a frame of preferences for the application. Use this method to add a
preference slip to your application.

General Application Protos

CHAPTER 3

NewtApp Reference

NewtApplication Stationary Methods

The following methods support adding stationary to your application.

ShowLayout

myNewtApplication: ShowLayout (layout)

Used to display a particular layout, at the appropriate time, in your
application. This method sets the current layout to the layout you specify. A
parameter value of ni | sets the value of the current layout to the value of the
previous layout. You can use it to switch the display from one layout to the
other layout (for example, from the main view to the overview.)

layout A symbol referring to a specific layout, as listed in the
al | Layout s slot.

AddEntryFromStationery

myNewtApplication: AddEnt r yFr ont at i oner y(stationerySymbol)

Called by the stationery button (newt NewSt at i oner yBut t on proto) to
create a blank entry and initialize its ¢l ass slot with the value passed in as
stationerySymbol.

stationerySymbol A symbol referring to the value of the stationery’s
synbol slot. It is used to set a cl ass slot for the new
blank entry. An example of an appropriate value from
the built-in Notes soup is ' paperrol | .

AdoptEntryFromStationery

myNewtApplication: Adopt Ent r yFr onSt ati onery (adoptee,
stationerySymbol, store)

Like AddEnt r yFr ont at i onery, but also copies all slots from the existing
entry into the new entry. There is no protection here, so be careful it does not
overwrite existing slots.

adoptee The data being adopted. This is usually a soup entry.

General Application Protos 3-15

3-16

CHAPTER 3

NewtApp Reference

stationerySymbol

store

A symbol that is the same as the stationery’s dat aDef
symbol. It creates a new entry from an existing entry.
The existing entry is created on the appropriate store,
and then is used to set a cl ass slot according to the
stationery symbol. The new entry is built using the
MakeNewEnt ry and Fi | | NewEnt r y methods in the
stationery dataDef. After the entry is built, all slots from
the existing entry are copied to the new entry and the
new entry is added to the soup.

The store on which to keep the information. If ni | is
specified, data is stored on the internal storage device.

AdoptSoupEntryFromStationery

myNewtApplication: Adopt SoupEnt r yFr onst at i oner y(adoptee,
stationerySymbol, store, soup)

Copies all slots from the entry to be adopted into the new entry and sets the
cl ass slot of that entry to the value of the stationerySymbol. You may specify
to which soup and store the entry should be added.

adoptee

stationerySymbol

store

soup

The entry being adopted.

A symbol referring to the value of the stationery’s
synbol slot. Itis used to set a cl ass slot for the new
blank entry. An example of an appropriate value from
the built-in Notes soup is ' paperrol | .

The store on which to keep the information. If ni | is
specified, data is stored on the internal storage device.

The symbol for one of the soups in the al | Soups slot.
Use ni | to indicate the current soup.

NewtApplication Filing Methods

The following methods, defined in the newt Appl i cat i on proto, are used
to support filing in your application.

General Application Protos

CHAPTER 3

NewtApp Reference

FolderChanged

myNewtApplication: Fol der Changed(soupName, oldFolder, newFolder)

Changes the folder tab label to the new folder name if it is different from the
old folder name, and saves the new folder information for the soup.

soupName Required. The name of the soup.

oldFolder Required. The folder where the document was
previously found.

newFolder Optional. A missing newFolder parameter means the
folder was deleted.

FilterChanged

myNewtApplication: Fi | t er Changed()

Saves the old folder name for each soup in the al | Soups slot, updates it to
the new folder name, and sets the soup cursor to refer to the new folder.
Finally, it sends the Fi | t er Changed message to the newt Layout proto so
it targets the appropriate view for the new folder.

Chainlin

myNewtApplication: Chai nl n(chainSymbol)

Adds a view to an array of views to be notified when the data in a layout is
changed by sending the Ret ar get message. This is automatically done for
you in the newt Fi | i ngBut t on proto and the newt AZTabs proto.

Any time the contents of a view are changed, this method updates the
affected view(s) and change the data target entry.

chainSymbol A symbol naming a slot that holds an array of views
that need to be notified when a Ret ar get message is
sent. The symbol should be ' r et ar get Chai n for the
ret ar get Chai n slot provided in the
newt Appl i cat i on proto.

General Application Protos 3-17

3-18

CHAPTER 3

NewtApp Reference

ChainOut

myNewtApplication: Chai nQut (chainSymbol)

Removes a view from an array of views which are to be notified when the
data in a layout is changed by sending the Ret ar get message. This is done
automatically for you in the newt Fi | i ngBut t on proto and the

newt AZTabs proto.

Any time the contents of a view are changed, this method updates the
affected view(s) and change the data target entry.

chainSymbol A symbol naming a slot that holds an array of views
that need to be notified when a Ret ar get message is
sent. The symbol should be ' r et ar get Chai n for the
r et ar get Chai n slot provided in the
newt Appl i cat i on proto.

GetTarget

myNewtApplication: Get Tar get ()

Returns the current soup entry, which is also known as the target soup entry.
The target in the application level is undefined.

GetTargetView

myNewtApplication: Get Tar get Vi ew()

Returns the view in which the target soup entry is displayed. The target view
in the base application level is undefined.

newtApplication Find Methods

The following methods, defined in the newt Appl i cat i on proto, are used
to add Find support to your application. You do not call any of these
methods. For more about the Find system services, see Chapter 13, “Find
Reference,” in the Newton Programmer’s Guide.

General Application Protos

CHAPTER 3

NewtApp Reference

DateFind

myNewtApplication: Dat eFi nd(date, findType, results, scope, findContext)

The default Dat eFi nd method as provided in the Newt Appl i cati on
proto. You must supply a dat eFi ndS| ot to your newt Appl i cat i on proto
for your application to utilize this Dat eFi nd method.

This method searches for all items that occur on, before, or after a date,
depending on which choice the user makes from the Find dialog box.

This Dat eFi nd method displays a status view that reports where it is
currently searching for the date value. It looks for the specified date in all the
soups specified in the al | Soups slot of your application and builds an array
that contains the results. You should use the ShowFound! t ens method to
report the results.

date Specifies the date selected by the user. The date is
represented as an integer that is the number of minutes
passed since midnight, January 1, 1904.

findType Either the symbol ' dat eBef ore or' dat eAf ter.
Specifies whether the user chose to find items before or
after the date specified by the value of the date
parameter.

results This Dat eFi nd method appends the slot nyResul t to
the results array passed to the Dat eFi nd method by the
system. The exact content of the myResul t slot
depends on the kind of finder proto used to create the
frame returned by your search method. If you used the
soupFi nder proto, the frame contains a cursor that
iterates over a list of entries returned by your search
method’s query on the application data soup. If you
used the ROM _Conpat i bl eFi nder proto, the frame
contains an array of found items. If a global find is in
progress, the results array may contain slots created by
other applications’ search methods.

scope Either' | ocal Fi nd or' gl obal Fi nd. Indicates
whether the search is local or global, allowing you to
handle these two cases differently if you prefer.

General Application Protos 3-19

3-20

CHAPTER 3

NewtApp Reference

findContext

Find

A frame to which the message Set St at us is sent. The
Set St at us function accepts as its sole argument a
string to display to the user while the search is in
progress.

myNewtApplication: Fi nd(text, results, scope, findContext)

Searches all the soups in the al | Soups frame for the text specified by the
user. The return value of this method is ignored; the results of the search are
returned in the results parameter.

text

results

scope

findContext

Contains the user-specified string for which Find is to
search.

This Fi nd method appends the slot nyResul t to the
results array passed to the Fi nd method by the system.
The exact content of the myResul t slot depends on the
kind of finder proto used to create the frame returned
by your search method. If you used the soupFi nder
proto, the frame contains a cursor that iterates over a list
of entries returned by your search method’s query on
the application data soup. If you used the

ROM Conpat i bl eFi nder proto, the frame contains an
array of found items. If a global find is in progress, the
results array may contain slots created by other
applications’ search methods.

Either ' | ocal Fi nd or' gl obal Fi nd. Indicates
whether the search is local or global, allowing you to
handle these two cases differently if you prefer.

A frame to which the message Set St at us is sent. The
Set St at us function accepts as its sole argument a
string to display to the user while the search is in
progress.

General Application Protos

CHAPTER 3

NewtApp Reference

ShowFoundltem

myNewtApplication: ShowFoundl t ent entry, finder)

Switches folders as necessary to show the found items as they are chosen by
the user from the dialog box.

entry The entry in which the item is found.

finder A NewtApp-compatible finder constructed by the
newt Appl i cat i on proto.

newtApplication Delete and Duplicate Methods

The following methods, defined in the newt Appl i cat i on proto, can be
used to delete and duplicate data items.

NewtDeleteScript

myNewtApplication: Newt Del et eScri pt (what, view)

Deletes the specified item(s) and removes it from the specified view. This
method displays alerts, in case someone tries to use delete when nothing is
selected or tries to delete items in the Overview. This method also saves the
item and the view for a possible undo action.

what A cursor or other reference to the item(s) to delete.
view A symbol referring to the view in which the item
appears.

NewtDuplicateScript

myNewtApplication: Newt Dupl i cat eScri pt (what, view)

Duplicates the specified item(s) and adds the duplicate to the specified view.
This method also displays an alert which appears if someone tries to
duplicate when nothing is selected. This method saves the item and the view
for a possible undo action.

what A cursor or other reference to the item(s) to be
duplicated.

General Application Protos 3-21

3-22

CHAPTER 3

NewtApp Reference

view A symbol referring to the view in which the item
appears.

NewtApplication Status Methods

The following methods, defined in the newt Appl i cat i on proto, can be
used to obtain information about and save the state of your application.

GetAppState

myNewtApplication: Get AppSt at e()

Gets the application preferences and uses them to set the values of the labels
filter, the current and previous layouts, and the recognition settings. It then
returns a copy of the application preferences.

Your application may override Get AppSt at e, SaveAppSt at e, and
Get Def aul t St at e to add your own application preferences.

GetDefaultState

myNewtApplication: Get Def aul t St at e()

This method sets the default values for the application preferences, including
values for the labels filter, the position of the current layout, the current and
previous layouts, and the recognition settings.

Your application may override Get AppSt at e, SaveAppSt at e, and
Get Def aul t St at e to add your own application preferences.

SaveAppState

myNewtApplication: SaveAppSt at e()

Saves application status. The following is saved:

» folder positions for each entry in each soup in the al | Soups slot
» filters used to determine filing location

» view positions, including the current and previous layouts

General Application Protos

CHAPTER 3

NewtApp Reference

Your application may override Get AppSt at e, SaveAppSt at e, and
Cet Def aul t St at e to add your own application preferences.

newtinfoButton

"
1

This proto provides the standard “i” information button, which always
appears to the far left of the status bar. It is based on pr ot ol nf oBut t on,
discussed in Chapter 6, “Controls Reference.”

Unlike the pr ot ol nf oBut t on, the newt | nf oBut t on proto provides the
default methods Dol nf oAbout , Dol nf oHel p, and Dol nf oPr ef s, which
are invoked when the user taps About, Help, or Prefs in the picker, as shown
in Figure 3-1.

Figure 3-1 The Information button and picker

About
Help
Prefs

The following methods provide default handling for items in the picker
menu of the newt | nf oBut t on.

DolinfoAbout
myInfoButton: Dol nf oAbout ()

Closed and set to ni | if an About view has been created. If no About view is
open, one is created.

DolnfoHelp
mylInfoButton: Dol nf oHel p()

Closed and set to ni | if an on-line Help book has been created. If no Help
book is open, this method looks for an index to one in a vi ewHel pTopi ¢

General Application Protos 3-23

3-24

CHAPTER 3

NewtApp Reference

slot in the base view. If one exists, the Help manual is opened to the index
location; otherwise, it is just opened.

DolnfoPrefs

myInfoButton: Dol nf oPr ef s()

Closed and set to ni | if a Preferences view has been created. If no
Preferences view is open, one is created.

newtAboutView

This proto is the view in which information about the application is stored.
The About view is displayed when the user chooses About from the Info
(“i”) button picker, which sends the Dol nf oAbout message. It appears as
shown in Figure 3-2.

General Application Protos

CHAPTER 3

NewtApp Reference

Figure 3-2 The NewtApp About view

Page Starter

Mewtdapp 1.0w1

@ 1993-1994 Apple
Computer. &ll rights
reserved.

1k storage used for 5 [tems

newtPrefsView

This proto is the view in which information about the application is stored.
The Preferences view is displayed when the user chooses Prefs from the Info
(“1”) button picker and the method Dol nf oPr ef s is sent. It appears as
shown in Figure 3-3.

General Application Protos 3-25

CHAPTER 3

NewtApp Reference

Figure 3-3 A NewtApp Preferences view

Page 5tarter Preferences

Lo Always store newitemns internally

newtActionButton

This proto provides the standard action button. If you have a card-style
application and want routing, place this in the menuRi ght But t ons slot of
newt St at usBar (page 3-30) and the framework will place it correctly on
the status bar. The action button belongs next to the close box (to the left). It
appears as shown in Figure 3-4.

Figure 3-4 The Action button

3-26

newtFilingButton

This proto provides the standard filing button, with added functionality of
working with the NewtApp framework. If you have a card-style application
and want filing, place this in the menuRi ght But t ons slot of

newt St at usBar (page 3-30) and the framework will place it correctly on
the status bar. The filing button belongs to the left of the action box. It
appears as shown in Figure 3-5.

General Application Protos

CHAPTER 3

NewtApp Reference

Figure 3-5 The Filing button

newtAZTabs

This proto is used to include alphabetical tabs, arranged horizontally, in a
view; it is based on the pr ot 0AZTabs but adds useful functionality to that
base. (See pr ot 0AZTabs in Chapter 6, “Controls Reference.”) The

newt AZTabs view appears as shown in Figure 3-6.

Figure 3-6 NewtApp A-Z tabs

mcd ef|gh]ij kﬂmﬂup qr] st uﬂ.lm yz]

When a view is changed and a new view is set up, as happens when
someone taps an alphabet tab, each view is automatically added to a

ret ar get Chai n array. When a view needs to update and redraw itself, the
rest of the views in the chain of views contained by it are notified, and a

Ret ar get message is sent to the entire chain.

Note that newt AZTabs works by using the index you have set up in an
i ndexPat h slot of the soupQuer y for your soup. (These are defined in the
newt Appl i cati on. al | Soups base view slot.)

This proto defines its own versions of Ret ar get Not i fy and

Pi ckLet t er Scri pt, which you can override to add functionality
appropriate to your application data. If you do, however, remember to call
the inherited method.

General Application Protos 3-27

CHAPTER 3

NewtApp Reference

PickLetterScript

myTabs: Pi ckLet t er Scri pt (letter)

Called when the user taps a tab. The letter on the tab is matched to the value
set up in the i ndexPat h slot of the soupQuer y frame (in the
newt Appl i cati on. al | Soups slot), and the entry and view are retargeted.

letter The letter that was tapped.

newtFolderTab

This is the plain folder tab. If you want filing to operate correctly in your
application, it must use either this proto or the newt C ockFol der Tab
proto. The newt Fol der Tab view is shown in Figure 3-7.

Figure 3-7 The plain folder tab

_ & All Items :

newtClockFolderTab

This folder tab incorporates a date and time indicator. It is automatically
updated if the current folder is deleted. When the user taps the folder tab, a
picker containing the list of folders available to your application displays. If
you want filing to operate correctly in your application, it must use either the
newt Fol der Tab proto or the newt O ockFol der Tab proto, shown in
Figure 3-8.

Figure 3-8 The digital clock and folder tab

3-28

. + Unfiled Items :

General Application Protos

CHAPTER 3

NewtApp Reference

newtStatusBarNoClose

This proto is the basic component of the newt St at usBar : the bar alone,
with no buttons or close box.

This proto implements the menulLef t But t ons and nenuRi ght But t ons
slots, which are placeholders for buttons you add. The slots

menulef t But t ons and menuRi ght But t ons are arrays of buttons to be
displayed on the status bar. They are arranged at display time as
stepchildren of the menu bar.

When there is no st at usBar Sl ot (page 3-11) set in the newt Appl i cat i on
base view, the status bar figures the correct size of the buttons in the
menuLef t But t ons and menuRi ght But t ons arrays and places them
correctly. It is recommended that you use these slots to ensure the correct
justification of your status bar buttons with future enhancements.

If the st at usBar Sl ot in the base view has been set, the appearance and
disappearance of the buttons on the status bar is governed by the values set
for the menuLef t But t ons and menuRi ght But t ons slots, at the layout
level of the application. See “newtLayout,” beginning on page 3-32.

The buttons in the menulLef t But t ons array are laid out from left to right,
starting with the Info button. The buttons in the menuRi ght But t ons array
are laid out from right to left, starting with the close box.

Slot descriptions

menulLef t Butt ons
An array of standard text buttons. The elements in the
array are laid out from left to right, with the first
element at the far left. An appropriate value is shown in
the following code:

menulLef t Butt ons:
[newt | nf oBut t on,
newt NewSt at i oner yBut t on,
newt ShowSt at i oner yBut t on]

General Application Protos 3-29

CHAPTER 3

NewtApp Reference

menuRi ght But t ons
An array of standard text buttons. The elements in the
array are laid out from right to left, with the first
element at the far right. An appropriate value is shown
in the following code:

nmenuRi ght But t ons:
[newt Acti onBut t on,
newt Fi | i ngButton,]

newtStatusBar

This proto is based on the newt St at usBar NoCl ose. The only difference
between the two is that this status bar includes a large close box at its far
right side, as shown in Figure 3-9. As with the newt St at usBar NoCl ose
proto, you may use the menuLef t But t ons and nenuRi ght But t ons
arrays.

Figure 3-9 A status bar view

3-30

)

Slot descriptions

menulLef t But t ons
An array of standard text buttons. The elements in the
array are laid out from left to right, with the first
element at the far left. An appropriate value is shown in
the following code:

nmenulLeft Butt ons:
[newt | nf oButt on,
newt NewSt at i oner yButt on,
newt ShowSt at i oner yBut t on]

General Application Protos

CHAPTER 3

NewtApp Reference

menuRi ght But t ons
An array of standard text buttons. The elements in the
array are laid out from right to left, with the first
element at the far right. An appropriate value is shown
in the following code:

menuRi ght But t ons:
[newt Acti onBut t on,
newt Fi | i ngButton,]

newtFloatingBar

This proto is like a standard newt St at usBar, but it floats at the bottom of a
view. It was originally designed for the Notes application where individual
view types such as the Outline view have their own menu buttons that are
not necessary for the main application view. Like the newt St at usBar
proto, it implements a menuBut t ons slot, in which you may enumerate the
buttons to appear on the floating bar. A floating bar view is shown in

Figure 3-10.

Figure 3-10 A floating bar view

newtFloatingBar H= i =i P

Slot description

menuBut t ons An array of button protos. Buttons are laid out, an equal
distance apart, left to right in array order on the status
bar.

General Application Protos 3-31

3-32

CHAPTER 3

NewtApp Reference

newtlLayout

This proto must have at least one newt Ent r yVi ew proto as a child view. (It
may also contain other protos.) For layouts to work correctly, you must set
the mast er SoupSl ot to the soup from the newt Appl i cati on. al | Soups
slot to be used for this layout. In addition, you can direct your application to
force a new entry to be created (or not) when a user opens an empty folder,
by setting a layout’s f or ceNewEnt r y slot.

The nenuLef t But t ons and menuRi ght But t ons slots allow you to control
which buttons appear on the status bar from the layout layer of the
application. (The st at usBar Sl ot of the newt Appl i cat i on base view
must also be set.)

The following slots originate in the newlLayout proto and are inherited by
the other layout protos:

Slot descriptions
name Optional. An exampleis" Al | | nfo".

mast er SoupS| ot Required. A symbol that refers to the soup in the
newt Appl i cati on.al | Soups frame that is the main
soup of your application. It sets up the cursor and soup
query for your application. An appropriate value would
be ' my Soup.

forceNeweEntry Optional. Defaults to t r ue. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.

If f or ceNewEnt ry is set to ni | , no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAl | slot set in the
newt Appl i cati on base view.

menuRi ght But t ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuRi ght But t ons on the
status bar in the main layout.

General Application Protos

CHAPTER 3

NewtApp Reference

menulLef t Butt ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuLef t But t ons on the
status bar in the main layout.

The following slots are included for your information. They are maintained
automatically, so you need not worry about setting them. The dat aCur sor
slot is the main cursor to your application soup.

Slot descriptions

dat aSoup Set to the soup that contains the data this layout
displays.
dat aCur sor The main cursor to the data soup; it points to the

topmost visible entry.

The following methods are defined in the newt Layout proto.

FlushData
myLayout: Fl ushDat a()

Flushes all entries in the child views held by the layout view.

NewTarget

myLayout: NewTar get ()

Resets the view origin and redoes the screen.

Retarget

myLayout: Ret ar get (setViews)

Sets the cursor (dat aCur sor) to the new or changed entry and redraws the
screen after the cursor is changed, if the setViews parameter is t r ue. Note
that you should not use this method with a newt Over Layout or

newt Rol | Over Layout proto.

setViews If set to t r ue, the child views are redrawn.

General Application Protos 3-33

3-34

CHAPTER 3

NewtApp Reference

DoRetarget

myLayout: DoRet ar get

If received by the entry layer, it performs a ReTar get on itself. If received by
the layout layer, it performs a ReTar get , with a non-nil value, on itself.

ScrollCursor

myLayout: Scr ol | Cur sor (delta)
Moves the cursor delta entries and resets it.

delta An integer which can be greater than 0 or less than or
equal to 0, depending on the direction for the scroll and
the amount to scroll.

If delta is not equal to 0 (and the cursor is valid), the
cursor is moved that number of places.

A value less than or equal to 0 causes the cursor to reset
to the end of the entries (for a scrolling end behavior of
"wrap or ' beepAndW ap) or to move to the next entry
(for a scrolling end behavior of ' st op or

' beepAndSt op). A value greater than 0 causes the
cursor to reset (for a scrolling end behavior of ' wr ap or
' beepAndW ap) or to move to the previous entry (for a
scrolling end behavior of ' st op or ' beepAndSt op).

SetUpCursor

myLayout: Set UpCur sor ()

Sets the cursor to an entry in the master soup and returns the entry to which
the cursor is set. If there are no entries in the master soup and

f orceNewEnt ry is t r ue, this method creates a blank entry (by calling
AddBI ankEnt r y) and sets the cursor to it.

General Application Protos

CHAPTER 3

NewtApp Reference

Scroller

myLayout: Scr ol | er (numAndDirection)

Traverses the number of entries specified by the parameter. In addition,
depending on whether the parameter is less than or greater than 0, the
scroller scrolls either up or down.

numAndDirection Either +n or —n, where n is the number of entries to

traverse. A value less than 0 is a scroll up and a value
greater than 0 is a scroll down.

IMPORTANT

This cannot be used in a newt Over Layout or
newt Rol | Over Layout . a

ShowFoundltem

myLayout: ShowFoundlI t en{ entry, finder)

Uses the cursor already set up in the dat aCur sor slot to go to the slot in the
specified entry and conditionally sends the ShowFoundl t emmessage to any
child views. You may choose to override the method to customize it to the
specific data.

entry A valid soup entry.

finder A NewtApp-compatible finder.

ViewScrollDownScript

myLayout: Vi ewScr ol | DownScri pt ()

Produces a visual effect and calls the scr ol | er method with a value of 1.

ViewScrollUpScript

myLayout: Vi ewScr ol | UpScri pt ()

Produces a visual effect and calls the scr ol | er method with a value of -1.

General Application Protos 3-35

3-36

CHAPTER 3

NewtApp Reference

newtRollLayout

An example of this prototype can be seen in the built-in Notes application,
which it was designed to support. This proto is meant to work with
stationery-based children and does not work with other protos without a lot
of effort on your part.

Anew Rol | Layout calculates at run time how many children it has,
depending on the number and size of the entries in the soup. It uses the
layout file—which must contain a newt Rol | Ent r yVi ewproto you
provided as the value of the pr ot oChi | d slot—as the default child view to
use when it dynamically builds itself.

IMPORTANT

Do not place the entry view of a roll-style application inside
a layout view; instead, it must be in a layout file (in NTK)
which is declared in an expression in the pr ot oChi | d slot,
as shown in the following example:

MyRol | Layout . protoChild : =
Cet Layout (" Def aul t Ent ryVi ew'") A

Slot description

protoChild Required. Reference to the layout file containing the
view to use to lay out the child views. The child view
must be a newt Rol | Ent r yVi ew This is the most
important newt Rol | Layout slot. Do not create the
entry view within a layout view in a page-style
application. Instead, create it in a separate layout file.
An appropriate value for the pr ot oChi | d slot of a
newt Rol | Layout is
Cet Layout ("Defaul tEntryVi ew').

There are no new methods specifically for the roll layout proto. However, it
does have its own version of the Scr ol | er method, modified so it works
with the long pages of the newt Rol | Layout . See the newt Layout

Scrol | er method (page 3-35) for more information.

General Application Protos

CHAPTER 3

NewtApp Reference

newtPagelayout

This layout allows one entry to be visible at a time; otherwise, it acts the
same as the roll layout. The entry shown can be longer than one screenful.

A newt PageLayout, like the newt Rol | Layout proto, calculates at run
time how large it is, depending on the size of its child views. It uses the
layout file—which must contain a newt PageEnt r yVi ew proto you
provided as the value of the pr ot oChi | d slot—as the default child view to
use when it dynamically builds itself.

IMPORTANT

Do not place the entry view of a page-style application
inside a layout view; instead, it must be in a layout file (in
NTK) which is declared in an expression in the pr ot oChi | d
slot, as shown in the following example:

MyPagelLayout . protoChild : =
Get Layout (" Def aul t EntryVi ew') A

Slot description

protoChild Required. Reference to the layout file containing the
view to use to lay out the child views. The child view
must be a newt Rol | Ent r yVi ew This is the most
important newt Rol | Layout slot. Do not create the
entry view within a layout view in a roll-style
application. Instead, create it in a separate layout file.

An appropriate value for the pr ot oChi | d slot of a
newt PagelLayout is
Get Layout (" Defaul t EntryView').

newtOverLayout

This is the default overview. It is based on pr ot oOver vi ew (See
pr ot oOver vi ew(page 5-85) for more information.) It is singled out by the
newt Appl i cati on proto so that overview events invoke it.

General Application Protos 3-37

3-38

CHAPTER 3

NewtApp Reference

As with the pr ot oOver vi ew the newt Over Layout proto doesn’t have
view children; instead, it builds up shapes containing the overview
information and handles taps. These shapes are returned by the Abst r act
method.

Because of the way the newt Over Layout proto is implemented, you should
make sure that if you override an inherited method, you include a call to that
method by using the conditional message send (:?) operator.

Slot descriptions
mast er SoupSl ot Required. A symbol that matches a value in the
al | Soups slot in the newt Appl i cat i on base view.
dat aCur sor Required. Do not set this; value is inherited from the
parent layout proto.

name Required. Set it to something meaningful, like
“Overview.”
cent er Tar get Optional. Defaults to ni | . When set to t r ue, the

current entry is centered in the overview list.

forceNeweEntry Optional. Defaults tot r ue. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.

If f or ceNewENt ry is set to ni | , no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAl | slot set in the
newt Appl i cati on base view.

menuRi ght But t ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuRi ght But t ons in the
newt St at usBar in the main layout.

menulLef t Butt ons
Optional. If the st at usBar Sl ot in the base view is set,
this is used to replace the menuLef t But t ons in the
newt St at usBar in the main layout.

General Application Protos

CHAPTER 3

NewtApp Reference

not hi ngCheckabl e
Optional. When t r ue, the check boxes and vertical
dotted line are suppressed.

Several methods are defined in this proto.

Abstract

myOverLayout: Abst r act (targetEntry, bbox)

Returns a shape or shape list representing an item in the overview. It is
passed two parameters; the first is the target soup entry and the second a
bounds frame within which the returned shape should be placed. You should
override this method to extract text from your soup format.

It extracts an icon for the entry (if one is provided) from the i con slot of a
dataDef.

targetEntry Required. The soup entry frame to be displayed.

bbox Required. The bounding box defining the shape for the
overview information. This includes a value for the left,
right, top, and bottom.

An Abst r act method example follows:

Abstract:
func(item bbox)
begin
/1 returns a shape for one Iine in the overview
MakeText (i tem name, bbox.left, bbox.top,
bbox. right, bbox.bottom;
end;

GetTargetinfo

myOverLayout: Get Tar get | nf o(targetType)

Used by several system services (such as Filing, Find, and Routing) to get
information about the currently selected item. You can override this method
if necessary.

General Application Protos 3-39

3-40

CHAPTER 3

NewtApp Reference

targetType

Slot descriptions

A symbol identifying what special kind of information
the view should return, besides the default frame.
Currently, the only symbol defined is' fi | i ng. Any
other value is ignored.

This method returns a frame that has the following slots:

t ar get

target Vi ew

target Store

Hitltem

The value of the t ar get slot in the view to which this
message is sent.

The value of the t ar get Vi ewslot in the view to which
this message is sent. If targetType is ' fi | i ng, this slot
contains the value of the t ar get App slot in the current
view instead.

If the t ar get slot is a soup entry, the store on which the
entry resides is returned in this slot.

myOverLayout: Hi t | t en(index, X, y)

A method called when an item is tapped. The default method returns t r ue if
it handled the tap; that is, if it determined the tap was within the
sel ect | ndent margin and selected the item.

If you choose to override this method, you should check the x, y values; if
you don’t want to handle them, call i nheri t ed: Hi t | t em Also, be sure to
exclude the indent margin from your test.

index
X

The index to the item in the list (the first one being 0).

The x coordinate of the tap, relative to the left edge of
the item that was tapped.
The y coordinate of the tap, relative to the top edge of
the item that was tapped.

General Application Protos

CHAPTER 3

NewtApp Reference

newtRollOverLayout

Same as the newt Over Layout proto, except that it must be used in a
roll-style application. It is based on newt Over Layout . It is singled out by
the newt Appl i cat i on proto so overview events invoke it.

The newt Over Layout proto doesn’t have view children; instead, it builds
up a shape containing the overview information and handles taps. These
shapes are returned by the Abst r act method.

Because of the way the newt Rol | Over Layout proto is implemented, you
should make sure that if you override an inherited method, you include a
call to that method by using the conditional message send (:?) operator.

Slot descriptions

mast er SoupSl ot Required. A symbol that matches a value in the
al | Soups slot in the newt Appl i cat i on base view.

dat aCur sor Required. You do not set this, it is inherited from the
parent layout proto.

nane Required. Set it to something easy to remember, like
“Overview.”

forceNewEntry Optional. Defaults to t r ue. Creates a blank entry for
this layout when the application is switched to a folder
with no entries.

If f or ceNewENnt ry is set to ni | , no blank entries are
created. Instead, the application displays the string,
“There are no items in this folder,” where items is
replaced by the value of the appAl | slot set in the
newt Appl i cati on base view.

cent er Tar get Optional. Defaults to ni | . When set to t r ue, the
current entry is centered in the overview list.

menuRi ght But t ons
Optional. If the st at usBar Sl ot in the base view is set,
this replaces the menuRi ght But t ons in the
newt St at usBar in the main layout.

menulLeft But t ons
Optional. If the st at usBar Sl ot in the base view is set,

General Application Protos 3-41

3-42

CHAPTER 3

NewtApp Reference

this replaces the menuLef t But t ons in the
newt St at usBar in the main layout.

not hi ngCheckabl e
Optional. When t r ue, the check boxes and vertical
dotted line are suppressed.

newtEntryView

The newt Ent r yVi ewproto is the invisible container view for the protos that
allow you to view and edit data. See “Slot View Protos” (page 3-49) for
details. This proto is essential because it sets the t ar get slot to refer to the
soup entry that contains the data for the slot views to display.

There are no unusual slots to set, just the usual bounds and justify slots, and
then only if you want to override the default settings.

The following slots are set automatically. Note that dataDefs and viewDefs
are identified and used as target entries and target views in several
newt Ent r yVi ewslots.

IMPORTANT

Do not change the values of any of the following slots, or
your application will not work correctly. a

Slot descriptions

ent ryChanged When an entry is changed in a viewDef, this is set to
t r ue for flushing.

entryDirtied If the targeted viewDef was changed once and a flush
occurred, this is set to t r ue. When the view is closed
down, it checks this. If set, it does a broadcast soup
change to other applications.

t ar get Set to the entry that is ready to display.

vi ewJustify Optional. Defaults to parent full justify for horizontal
and vertical vj Parent Ful | H + vj Parent Ful | V

current Dat aDef Set by the enclosed stationery view to the current
dataDef. (See Chapter 5, “Stationery,” in Newton
Programmer’s Guide for more information.) This is a

General Application Protos

CHAPTER 3

NewtApp Reference

convenient access point for items like the
newt Ent r yRol | Header, so it can pull out the
appropriate icon from the newt | nf oBox.

current Vi enDef Set by the enclosed stationery view to the current
viewDef.

current St at Vi ewSet by the enclosed stationery view to the current
context of the viewDef. If the target entry has a dataDef
displayed, this points to it.
Internal methods need to know the context for the view
that contains the dataDef so messages may be sent to it.

The following methods are defined for the newt Ent r yVi ewproto and are
inherited by all entry views that are based on it.

StartFlush
myEntryView: St art Fl ush()

Starts the timer that flushes out the entry after a few seconds of inactivity.
Normally this is called automatically by a dataDef, but if you have some
other reason for causing an entry to be flushed, call this directly. Calling this
sets the ent r yChanged slot and begins the flush timer.

EndFlush
myEntryView: EndFl ush()

Called when the flush timer fires. If you want an immediate flush, set
ent ryChanged tot r ue and call this method.

EntryCool

myEntryView: Ent r yCool (report)
Checks to see if the target entry is on read-only media.

report If report is a non-ni | value, the notice “This is on a
write-protected card and cannot be changed” is
displayed, if the target entry in on read-only media.

General Application Protos 3-43

3-44

CHAPTER 3

NewtApp Reference

JamFromEntry

myEntryView: Jantr onEnt r y(otherEntry)

Looks for a JanFr onEnt r y method in each child of the entry view and
sends the same message to its childviews if appropriate. It then retargets the
view to display the changes. For more information, see the slot view’s
redefinition of JanFr omEnt ry (page 3-50).

otherEntry A soup entry. This is intended to be an entry other than
the one to which the ent r yVi ewis already targeted.

Retarget

myEntryView: Ret ar get ()

Changes the display for the viewDef(s) and dataDef(s) before conditionally
sending the Ret ar get message to each child view. For more information,
see the slot view’s redefinition of Ret ar get (page 3-59).

DoRetarget

myEntryView: DoRet ar get ()

If received by the entry layer, it performs a ReTar get on itself. If received by
the layout layer, it performs a ReTar get , with a non-nil value, on itself.

newtFalseEntryView

This proto, which is based on newt Ent r yVi ew allows the use of the
NewtApp framework’s slot view protos and stationary without the rest of
the NewtApp structure for updating entries. It is ideal for converting an
existing non-NewtApp application to use the NewtApp slot view protos.

When you use slot views or stationary outside a NewtApp application, you
must put them in a newt Fal seEnt r yVi ewproto and make sure the

t arget and t ar get Vi ewslots are set. This is accomplished by sending a
Ret ar get message to the newt Fal seEnt r yVi ewwhenever entries are
changed.

General Application Protos

CHAPTER 3

NewtApp Reference

Writing a changed entry back to the soup is the responsibility of the
application. You may want to set up a flush timer, or at least write back
changes when scrolling and closing.

Slot descriptions

target Sl ot Optional. Defaults to ' t ar get . There’s no need to reset
it if the slot in the parent context of this view, which
holds the current entry (or target), is named t ar get . If
not, set it to the symbol that refers to the slot in the
parent context that holds the data from the target entry.

dat aCur sor Sl ot Optional. Defaults to' dat aCur sor. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the main soup cursor, is named
dat aCur sor. If not, set it to the symbol that refers to
the slot in the parent context that refers to the main
soup cursor.

dat aSoupSl| ot Optional. Defaults to ' dat aSoup. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the main soup, is named dat aSoup. If
not, set it to the symbol that refers to the slot in the
parent context that refers to the main soup.

soupQuerySl ot Optional. Defaults to ' soupQuer y. There’s no need to
reset it if the slot in the parent context of this view,
which refers to the soup query, is named soupQuer y. If
not, set it to the symbol that refers to the slot in the
parent context that refers to the soup query.

The newt Fal seEnt r yVi ewinherits all the methods documented in the
newt Ent r yVi ewproto, although they have been altered slightly to provide
a simulated NewtApp application environment.

newtRollEntryView

This proto is based on the newt Ent r yVi ewproto and is equivalent to it,
except that it supports the roll style application (as implemented by the

newt Rol | Ent r yVi ewproto). It dynamically sizes the entries, depending on
the size of the viewDef. You must use stationery with this proto.

General Application Protos 3-45

CHAPTER 3

NewtApp Reference

Slot descriptions

tar get Set by the system to point to the current entry.

target Vi ew Refers to the newt Rol | Ent r yVi ew proto itself, so that
routing and other system services can use it.

bott om essHei ght
Optional. Sets the height of the entry view when it is the
last item in a roll style application. Set to the constant
KEnt r yVi ewHei ght .

newtEntryPageHeader

This proto implements the standard header/divider bar for a page entry
view. If this header is displayed in association with some stationery (a
dataDef is the current target entry) and it has an icon assigned to its i con
slot (page 3-48) that icon is used at the far left of the header. Otherwise a
default icon provided by the system is used.

When you press the header icon on the left of the bar, the newt | nf oBox
proto page 3-47 is automatically opened. If your entry has ati t | e slot, the
title is displayed in the area where the date is shown; otherwise, the date is
displayed. You can see all these features in the built-in Notes application.

Figure 3-11 A page header

3-46

[E]Mon 7724

newtEntryRollHeader

This proto implements the standard header/divider bar in a roll entry view.
If this header is displayed in association with some stationery (a dataDef is
the current target entry) and if the dataDef has an icon assigned to itsi con
slot (page 3-48), it is used at the far left of the header. Otherwise, a default
icon provided by the system is used.

General Application Protos

CHAPTER 3

NewtApp Reference

When you tap the header icon, a newt | nf oBox proto (page 3-47) is
automatically displayed. If your entry has ati t | e slot, the title is displayed;
otherwise, the date is displayed. You can see all of these features in the
built-in Notes application. A roll header is shown in Figure 3-12.

Figure 3-12 A roll header

[E]Mon 7724 & E

Slot descriptions
hasFi | i ng Optional. Defaults to t r ue. Set to ni | for no Filing or
Action buttons.

resizabl e Optional. Defaults tot r ue. Set toni | for no drag
resizing.

newtEntryViewActionButton

This is the standard Action button. It must be a child of the entry view. It
handles the usual routing actions, but in the entry view rather than the
application base view context.

newtEntryViewFilingButton

This is the standard Filing button, but it must be a child of the entry view. It
handles the usual filing actions, but in the entry view rather than the
application base view context.

newtlinfoBox

This is a floating view based on pr ot oFl oat NGo. It displays informational
text including the date, the size of the target entry, and the storage location of
the entry. It also contains an input line with the label “Title.” If the text on

General Application Protos 3-47

CHAPTER 3

NewtApp Reference

that line is changed, the new text is saved automatically and displayed next
to the icon on the title bar after the proto is closed.

If your application uses stationery, the icon you declared in the i con slot is
used next to its description, which is also taken from the dataDef. You need
to add nothing to get a view that looks very similar to the one from the
built-in Notes application shown in Figure 3-13.

Figure 3-13 A NewtApp Information slip

3-48

[E]Mon 7731

Tivle Moh 7/ 31

Date: 3:07 pm Vion 7731595
5ize: 129 bytes
Where: Card

Slot descriptions
i con Optional. An icon representing the object about which
the information is provided.

descri ption Optional. A string describing the entry being displayed.

General Application Protos

CHAPTER 3

NewtApp Reference

Slot View Protos

The slot view protos include all the protos you use to view and edit the data
held in the slots of a soup entry. The slot view protos usually have a
one-to-one correspondence with soup slots.

There are two categories of slot views:
= Simple read-only (RO) and edit views
= Labelled input-line protos

All slot views assume a soup entry has been set by the parent proto as the
value of the t ar get slot. The t ar get slot is a reference to the soup entry
containing the data to be displayed in a slot view. This soup entry will also
stores the user-entered data.

This is set at run time by the NewtApp framework, where t ar get is a slot
defined in the newt Appl i cat i on base view. The t ar get Vi ewis the

newt Ent r yVi ewproto that contains the slot view in which the target data is
to be displayed.

When slot views are used outside a NewtApp application, the t ar get and

t ar get Vi ewslots must be set by you. In this case, the slot view protos must
be contained by a newt Fal seEnt r yVi ewproto (page 3-44), which must be
the view referred to by the t ar get Vi ewslot.

Slot views also require a pat h slot. Depending on the proto, this slot must be
a path expression leading to a slot that holds a certain kind of data. For
instance, the pat h slot of a newt ROText Dat eVi ew proto must refer to a slot
in an entry that contains dates.

Also included in this view category are two protos:newt Ent r yLockedl con,
(page 3-59) which you can use to indicate locked media or read-only views
and newt St at i oner yVi ew(page 3-59) which provides a bounding box for
your dataDef stationery component.

Slot View Protos 3-49

3-50

CHAPTER 3

NewtApp Reference

Slot description

pat h Required for all slot views. A symbol that is a path
expression to the slot in the target frame where the
initial value for the input line resides, and in which the
final value is to be stored.
The slot identified by the path expression should
contain the specified data for the specific slot view.

Also defined for the slot view protos is a Text Scri pt method that displays
the text for the target entry and a JanFr onEnt r y method that puts the path
of a new entry into the pat h slot. These work for all simple slot views.

TextScript

mySlotView: Text Scri pt ()

Returns a text representation of the data at the specified path in the target
soup entry for any slot view in your application.

JamFromEntry

mySlotView: JanfFr onEnt r y(otherEntry)

Replaces the path expression in the pat h slot with a new path expression.
The new path is formed by appending the value of the otherEntry parameter
to the path expression that leads to the soup entry in which the slot resides,
which it obtains from the j anl ot slot (if it's not ni |).

This essentially resets the target entry to a different entry and causes the
display to change so the user is looking at the new value.

otherEntry A soup entry. This is intended to be an entry other than
the one to which the ent r yVi ewis already targeted.

For an example of when you might want to use this method, imagine you are
developing an order-entry system. You want the customer address stored in
the order, but it’s in the Names soup. To extract the data, you set the

j anSl ot to a path expression that leads to the address in the Names soup
and send the Janfr onEnt r y message with the Names soup entry as the
value of the otherEntry parameter.

Slot View Protos

CHAPTER 3

NewtApp Reference

newtROTextView

This proto displays read-only text. It is the base proto for the rest of the

simple slot views.

Slot descriptions
pat h

styl es
t abs
j antl ot

Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

Optional. Defaults to ni | .

Optional. Defaults to ni | .

Optional. Defaults to ni | . If this view has a j anSl ot
that is not ni | , the slots from an entry passed to the
Janfr onEnt r y method are placed (“jammed”) into the
soup slot referred to by pat h.

The j anB| ot may be set to a path expression that
defines the path to use to extract data from a slot in an

entry, when the entry is not the one already targeted by
the entry view (which encloses the slot view).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View

Protos” (page 3-49).

newtTextView

This is the other base proto for the slot views; it is based on the read-only text
view (newt ROText Vi ew). Use it to display editable text that does not need a

label.

Slot descriptions
pat h

styles
t abs

Slot View Protos

Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

Optional. Defaults to ni | .
Optional. Defaults to ni | .

3-51

3-52

CHAPTER 3

NewtApp Reference

j ansl ot Optional. Defaults to ni | . If this view has a j an| ot
that is not ni | , the slots from an entry passed to the
JanFr onEnt r y method are placed (“jammed”) into the
soup slot referred to by pat h.
The j anB| ot may be set to a path expression that
defines the path to use to extract data from a slot in an
entry, when the entry is not the one already targeted by
the entry view (which encloses the slot view).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtRONumView

A read-only view for numbers, which is based on the NewtApp read-only
text view (newt ROText Vi ew). It has functionality added for number
formatting.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

f or mat Optional. The format string for displaying the data
defaults to %10g and a 10-place decimal. See
For mat t edNunber St r (page 23-17) for complete
details.

integerOnly Optional. Defaults to t r ue, signaling that conversion
from text to number should result in an integer.

See also the methods Text Scri pt and Janfr onEnt r y in “Slot View
Protos” (page 3-49).

newtNumView

An editable number view that is based on the read-only number view
(newt RONunVi ew) and inherits its slots. Specify number formatting by
assigning values to the f or mat and i nt eger Onl y slots.

Slot View Protos

CHAPTER 3

NewtApp Reference

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text to display in
this view, and in which to store the final value.

f or mat Optional. The format string for displaying the data
defaults to %10g and a 10-place decimal.

i ntegerOnly Optional. Defaults to t r ue, signaling that conversion
from text to number should result in an integer. A value
of nil allows real (decimal) numbers.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtROTextDateView

This proto is set to contain text and dates. Depending on which of the two
slots, | ongFor mat or shor t For mat , is non-ni | , this proto displays either
long or short dates, such as February 29, 1984, or 2/29/84.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which to get the initial text or date to
display in this view, and in which to store the final
value.

| ongFor mat Optional. Defaults to year Mont hDay St r Spec, which
is a format for use by the LongDat eSt r function
(page 17-23). The | ongdat e specification is defined by
the system. Either this slot or the shor t For nat slot
should not be ni |, so the view can choose the format.

shor t For mat Optional. Defaults to ni | . This is a format defined by
the system for use by the Short Dat eSt r function
(page 17-24).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos 3-53

3-54

CHAPTER 3

NewtApp Reference

newtTextDateView

This editable view is based on its read-only version
(newt ROText Dat eVi ew) and inherits its slots.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text or date to
display in this view, and in which to store the final
value.

| ongFor mat Optional. Defaults to year Mont hDay St r Spec, which
is a format for use by the LongDat eSt r function
(page 17-23). The | ongdat e specification is defined by
the system. Either this slot or the shor t For mat slot
should not be ni | , so the view can choose the format.

short For mat Optional. Defaults to ni | . This is a format defined by
the system for use by the Short Dat eSt r function
(page 17-24).

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View

Protos” (page 3-49).

newtROTextTimeView

This proto is based on the newt ROText Vi ew proto, but has functionality
added to display and format a time string. The slot to be displayed must
contain a time or text.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text and/or time to
display in this view, and in which to store the final
value.

f or mat Optional. Defaults to Short Ti neSt r Spec which is a
format for use by the Ti meSt r function (page 17-27).

Slot View Protos

CHAPTER 3

NewtApp Reference

See also the methods Text Scri pt and JanFr onEnt ry in “Slot View
Protos” (page 3-49).

newtTextTimeView

This editable view protos from its read-only version (newt ROText Ti neVi ew)
and inherits its slots.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which to get the initial text and/or time to
display in this view, and in which to store the final
value.

f or mat Optional. A format for use by the Ti meSt r function
(page 17-27). Defaults to Shor t Ti neSt r Spec.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtROTextPhoneView

This view, which is based on the newt ROText Vi ew proto, displays a
telephone number from the application soup.

Slot description

pat h Required. The slot identified by this path expression is
the slot from which to get the initial phone number to
display in this view, and in which to store the final
value.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos 3-55

3-56

CHAPTER 3

NewtApp Reference

newtTextPhoneView

This view, based on the newt ROText Vi ew proto, formats a number entered
into it by a user as a telephone number.

Slot description

pat h Required. The slot identified by this path expression is
the slot from which to get the initial numbers to display
in this view, and in which to store the final value.

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

newtROEditView

This is a fixed-size edit view that displays the application soup. It may also
be set up to have its own scrollers by setting the opt i onFl ags slot.

Slot descriptions

doCar et Optional. Defaults to t r ue, which autosets the caret.

opt i onFl ags Optional. Defaults to kNoOpt i ons (which has a
numeric value of 0) and sets the scrollers not to show.
The constant kHasScr ol | er sQpt i on (which has a
numeric value of 1) sets them to show.

Vi ewLi neSpaci ng
Optional. Defaults to 28.

pat h Required. The slot identified by this path expression is
the slot from which to get the initial numbers to display
in this view, and in which to store the final value.

This proto also defines the method Scr ol | ToWbr d for your convenience.
See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos

CHAPTER 3

NewtApp Reference

ScrollToword
myeditView: Scr ol | ToWbr d(words, hilite)

This method finds the specified word, scrolls the edit view to the found
word, and highlights it—if the hilite parameter is t r ue. If no match is found
for the specified word in any view child of the edit view, Scr ol | ToWr d
does nothing. This method does not work in roll layouts.

words May be a string or an array of single words to find.
hilite If t r ue, the matching text of the paragraph view is
highlighted.

newtEditView

This view protos is based on its read-only version (newt ROEdi t Vi ew) and
behaves simply, somewhat like a cl Edi t Vi ew (See “General Input Views”
beginning on page 8-6 in Newton Programmer’s Guide.) Unlike the read-only
version, this proto accepts user-entered text. A newt Edi t Vi ew with scroll

bars showing, is shown in Figure 3-14. This proto can use any of the

Newt ROEdi t Vi ewslots (page 3-56).

Figure 3-14 A newtEditView proto

Here's some text in a

See also the methods Text Scri pt and Janfr onEnt ry in “Slot View
Protos” (page 3-49).

Slot View Protos 3-57

3-58

CHAPTER 3

NewtApp Reference

newtCheckBox

This view is based on the pr ot oCheckBox page 6-24. Basically, it works so
the check mark is on when the value of the t ar get . (pat h) slot is equal to
the value of the assert slot. If you want more complex behavior, override
the Vi ewSet upFor nScr i pt and the Val ueChanged method.

Slot descriptions

pat h Required. The slot identified by this path expression is
the slot from which the initial text to display in this
view is gotten, and in which the final value is to be

stored.
assert Optional. Defaults to t r ue. Holds the “checked” value
negat e Optional. Defaults to ni | . Holds the “unchecked” value.

The values of assert and negat e are written back to and read from target.

See also the methods Text Scri pt and Janfr onEnt r y in “Slot View
Protos” (page 3-49).

This proto also implements the following two methods.

ViewSetupFormScript

myCheckbox: Vi ewSet upFor nScri pt ()

Checks the value of t ar get .(pat h) for equality against the value of the
assert slot. Override this method for more complex behavior.

ValueChanged

myCheckbox: Val ueChanged()

If the equality check in the Vi ewSet upFor nScri pt is non-ni |, the slot
t ar get . (pat h) is set to the assert value; otherwise, it is set to the
negat e value. Override this method for more complex behavior.

Slot View Protos

CHAPTER 3

NewtApp Reference

newtStationeryView

This view holds nothing; its function is to give a viewDef its bounding box. It
contains the instantiated view of a ViewDef template. This proto is different
from the newt St at i onery proto, page 4-3 which you use to create a
dataDef.

newtEntryLockedlcon

You use this proto to show a lock icon if the slot is on locked media, on a
ROM card, or contained in a read-only view. The newt Ent r yLockedI con
proto is set either to show or not show when your view is opened.

Slot description

icon Optional. Defaults to ni | ; it may also have the value
| ockedl con.

The following methods are defined internally to newt Ent r yLockedI con.
They should not be changed, or the proto does not work as documented.

Retarget

myLockedlcon: Ret ar get ()

Calls Set | con to show either the locked or unlocked icon (according to
whether the store is locked or in ROM) and redraws the icon.

Setlcon

myEntryLockedlcon: Set | con()

Checks the target soup entry to find out if it is or locked or in ROM. If it is,
the locked icon is displayed.

Slot View Protos 3-59

CHAPTER 3

NewtApp Reference

Labelled Input-Line Slot View Protos

The NewtApp labelled input-line protos function similarly to the
prot oLabel | nput Li ne family of protos. (If you are not familiar with those
protos, you may read about them in Chapter 8, “Text and Ink Input and
Display.”)

In addition to their label and pop-up menu capabilities, these protos include
the f | avor and access slots. The access slot limits the type of access each
label input-line slot view allows. The f | avor slots contain references to the
NewtApp filter protos. These protos assign appropriate pickers and correct
formatting for the intended data type. They are enumerated in Table 3-1.

Table 3-1

The NewtApp filters used to set the f | avor slot

Filter*
newt Text Fil ter

newt | nt eger

Filter
newt Nunber
Filter

Description

This is the filter the other filter
protos are based on. It allows
the label input-line proto,
which uses it as the value of its
fl avor slot, to accept text
input.

This filter is based on the

newt Text Fi | t er proto. It is set
to accept only integers as input
and contains a f or mat slot,
which you may set.

This filter is based on the
newt | nt eger Fi | ter proto. It
is set to accept all numbers as
input and contains a f or mat
slot, which you may set.

3-60 Labelled Input-Line Slot View Protos

Slots

This proto contains no slots for
you to set.

f or mat : Optional. Defaults to
% 10g. You should change this
as needed.

f or mat : Optional. Defaults to
% 10g. You should change this
as needed.

CHAPTER 3

NewtApp Reference

Table 3-1

The NewtApp filters used to set the f | avor slot (continued)

Filter*

newt Dat eFi | t er

newt Si npl e
DateFil ter

newt Ti neFil ter

Description
This filter is based on the

newt Text Fi | t er proto. Itis set
to accept dates as input and
contains two format slots,
which you may set; one must
be set to a non-ni | value. This

proto specifies that the

pr ot oDat ePopup picker is to

be used.

This filter is based on the

newt Dat eFi | t er proto and, is
similarly set to accept and
format dates. This filter allows
dates that look like 5/15/55 or
5/15 and is useful for birthday
input lines. It also contains two
format slots, one of which must

be set to a non-ni | value.

This filter is based on the
newt Text Fi | t er proto. It
contains a f or mat and

i ncrement slot, which you
may set. If an input line of a
newt Ti neFi | t er flavor uses a

pop-up menu, a

pr ot oTi mePopup picker is

specified by this proto.

Labelled Input-Line Slot View Protos

Slots

shor t For mat : Optional.
Defaults to ni | . May be set
to a format used by the
Shor t Dat eSt r function.

| ongFor mat : Optional. Defaults
to year Mont hDay St r Spec, a
format used by the LongDat eSt r
function.

short For mat : Optional.
Defaults to ni | . May be set
to a format used by the
Short Dat eSt r function.

| ongFor mat : Optional. Defaults
to mont hDaySt r Spec, which is
the format used by the

LongDat eSt r function to
withhold the year.

f or mat : Optional. Defaults to
short Ti meSt r Spec. You should
change this as needed.

i ncr ement : Optional. Defaults
to 10.

3-61

CHAPTER 3

NewtApp Reference

Table 3-1 The NewtApp filters used to set the f | avor slot (continued)
Filter* Description Slots
newt Dat eN This filter is based on the shor t For mat : Optional.

TinmeFilter

newt PhoneFi |l ter

newt CityFilter

new StateFilter

newt Text Fi | t er proto. It
contains the slots f or nat,

| ongFor mat , and

shor t For mat , which you may
set. Note that of the two slots,
| ongFor mat and

shor t For mat, one must be set
toanon-ni | value.

If an input line of a

newt Dat eNTi meFi | t er flavor
uses a pop-up menu, a

pr ot oDat eNTi nePopup
picker is specified by this proto.

This filter is on the

newt Text Fi | t er proto and is
used to format numbers as
phone numbers.

This filter is based on the
newt Text Fi | t er proto and is
used to format text as cities.

This filter is based on the
newt Text Fi | t er proto and is
used to format text as state
names or abbreviations.

If an input line of a

newt St ateFil ter flavor

uses a pop-up menu, a

pr ot oLocat i onPopup picker
is specified by this proto.

3-62 Labelled Input-Line Slot View Protos

Defaults to ni|.May be settoa
format used by the
Shor t Dat eSt r function.

| ongFor mat : Optional. Defaults
to year Mont hDay St r Spec, the
format used by the LongDat eSt r
function to withhold the year.

f or mat : Optional. Defaults to
short Ti meSt r Spec. You should
change this as needed.

ki nd: Optional. Defaults to ni .
The built-in types include f ax,
hone, and wor k, and are used
to change the label for the

input line.

This proto contains no slots for
you to set.

This proto contains no slots for
you to set.

CHAPTER 3

NewtApp Reference

Table 3-1 The NewtApp filters used to set the f | avor slot (continued)
Filter* Description Slots
newt Country This filter is based on the This proto contains no slots for
Filter newt Text Fi | t er proto and is you to set.

newt Srmar t Nane
Filter

used to format text as country
names or abbreviations.

If an input line of a

newt CountryFilter flavor
uses a pop-up menu, a

pr ot oLocat i onPopup picker
is specified by this proto.

This filter is based on the

newt Text Fi | t er proto and is
used to present the Names
soup to the user, who may
choose a name that appears on
the input line.

If an input line of a

newt Snart NaneFi | ter flavor
uses a pop-up menu, a

pr ot oPeopl ePopup picker is
specified by this proto.

This proto contains no slots for
you to set.

* Filter names in the first column are all one word. They have been broken here due to space

limitations.

newtProtoLine

The newt Pr ot oLi ne is the base view for the input line protos. This proto
inherits behavior from both the view class cl Vi ewand the proto
newt ROText Vi ew In addition, it contains built-in code that creates the label

picker and interprets menu item commands.

Most of the following slots are included for your information only. The only
slot you should change for the built-in protos is the | abel slot. Do not
change the access or flavor of the other slots; they will not work as planned.

Labelled Input-Line Slot View Protos

3-63

3-64

CHAPTER 3

NewtApp Reference

Slot descriptions

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

| abel Commands Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is

["picker option one", "picker option two"]

cur Label Command
Optional. If the | abel Commands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the | abel Commands array. If you
omit this slot, no item is initially marked with a check
mark. Note that you must update this value when a
different value is chosen.

usePopup Optional. Defaults to t r ue. When set to t r ue and you
provide a | abel Commands array, the input-line label
displays a diamond, indicating a picker (pop-up menu).

access Optional. Defaults to ' readW i t e. Valid values
include' readWite,' readOnly, and' pi ckOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

flavor Optional. Defaults to newt Fi | t er. See Table 3-1 for a
list of filters. Do not change this value for the built-in
protos or they will not work as expected.

nmenory Optional. Defaults to ni | . Used to reference a list of the
last n items chosen. The value of this slot is a symbol
that names the list. The symbol must incorporate your
developer signature.

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

This proto also contains the following methods:

ChangePopup

myProtoLine:ChangePopup(item, entry)

Allows you to change a menu item before it is displayed (assuming there is a
picker menu). For example, if you do a name query, but want to display “Bob
Johnson, Apple” instead of just “Bob,” use this method. If ChangePopup
isn’t defined, the menu just shows the original data.

item An item to be displayed in the picker menu.

entry The entry corresponding to the item selected from the
picker menu.

UpdateText

myProtoLine:Updat eText (newText)

Updates text for an Undo action. It changes the old text to the text passed in
as a parameter and posts that change to the Undo system service.

newText A string to which the entry is changed, which is passed
in as the parameter to this method.

newtLabellnputLine

This proto is used for a one-line input field that includes a text label and can
optionally feature a pop-up menu. It is similar to pr ot oLabel | nput Li ne,
and can use all of the slots available to that proto. It also shares some
behavior (j anS| ot etc.) with the text view, and is based on the

newt Pr ot oLi ne proto.

The newt Label | nput Li ne proto is a one-line input field that includes a
text label at its left. When a | abel Commands array is provided, a diamond
appears to the left of the label and the contents of the array appear in a
picker menu. Without | abel Conmands, the newt Label | nput Li ne proto
appears as shown in Figure 3-15.

Labelled Input-Line Slot View Protos 3-65

CHAPTER 3

NewtApp Reference

Figure 3-15 A NewtApp label input line

3-66

S5ome Text:

Slot descriptions
access

| abel

| abel Font

| abel Commands

cur Label Command

usePopup

pat h

Optional. Defaults to ' r eadW i t e. Valid values
include' readWite,' readOnly, and"' pi ckOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

Optional. Defaults to the empty string. Set to a string
such as “ Some Text ", which is the label text you wish
to display.

Optional. Sets the font used for the label. The default is
ROM f ont Syst enBBol d.

Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
value is:

["picker option one","picker option two"]

Optional. If the | abel Commands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the | abel Commands array. If you
omit this slot, no item is initially marked with a check
mark.

Optional. Defaults to t r ue. When set to t r ue and you
provide a | abel Commands array, the input line label
displays a diamond, indicating a picker (pop-up menu).
Required. The path expression should identify the soup
slot where the text is saved. An example is

[pat hExpr: kAppSoupSynbol, 'someText]

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

flavor Set to newt Text Fi | t er ; do not change this, or the
proto will not work as expected.

newtROLabellnputLine

This is the same as newt Label | nput Li ne, except that there is no dotted
line and the text displayed is read-only.

Slot descriptions

| abel Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label. An example is

"Some Text:"

pat h Required. The path expression should identify the soup
slot where the text is saved. An example is

[pat hExpr: kAppSoupSynbol, 'soneText]

flavor Set to newt Nurber Fi | t er ; do not change this, or the
proto will not work as expected.

newtROLabelNuminputLine

This proto (the read-only version and its editable counterpart) is the numeric
equivalent of the newt Label | nput Li ne protos. It is based on the

newt Pr ot oLi ne proto, but has a newt Nunber Fi | t er as the value of its

f1 avor slot, which imparts number formatting features to it.

The read-only display consists of the label designated in the | abel slot and
the data stored in the location specified by the pat h slot, but without a
dotted line for the input line. Note that it is not possible to create a picker for
anewt ROLabel | nput Li ne. An example is shown in Figure 3-16.

Labelled Input-Line Slot View Protos 3-67

CHAPTER 3

NewtApp Reference

Figure 3-16 A NewtApp label display line for text

AMNumber: 120.00

Slot descriptions

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label. An example of a valid value is

"A Nunber:"
pat h Required. A path expression of the form:

[pat hExpr: your SoupSynbol , 'aNunber]

newtLabelNuminputLine

This is the same as the newt ROLabel Num nput Li ne, except that data may

be entered on the dotted input line and is saved to the data location specified
in the pat h slot. The proto, with a | abel Commands array with the specified
value["1","2","3","4","5"] and at r ue value for the usePopup slot,

is shown in Figure 3-17.

Figure 3-17 A NewtApp label number input line

3-68

& A Mumber:

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

Slot descriptions

access Optional. Defaults to' readW i t e. Valid values
include' readWite,' readOnly, and' pi ckOnly. Do
not change this value for the built-in protos, or they will
not work as expected.

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input line
label. An example of a valid value is

"A Nunber:"

| abel Commands Optional. An array of strings that should appear in a
picker when the user taps the label. If this slot is
supplied, the picker feature is activated and the label is
shown with a diamond to its left to indicate that it is a
picker. The currently selected item in the list, if there is
one, is marked with a check mark to its left. A sample
valueis: ["1","2","3","4", "5"]

usePopup Optional. Defaults to t r ue. When set to t r ue and you
provide a | abel Commands array, the input-line label
displays a diamond, indicating a picker (pop-up menu).

pat h Required. A path expression of the form

[pat hExpr: your SoupSynbol, 'aNunber]

flavor Set to newt Nurber Fi | t er ; do not change this, or the
proto will not work as expected.

newtLabelDatelnputLine

This proto allows inputs of dates through a system-provided picker or by
directly entering them on the input line. A label date input-line view is
shown in Figure 3-18.

Labelled Input-Line Slot View Protos 3-69

CHAPTER 3

NewtApp Reference

Figure 3-18 A NewtApp label date input line

#Date Due: P9

3-70

March 19958) — #Date Due: _Mﬂ.l"ﬂh 23, 1??&

= m t w t

When a date is entered on the input line, the calendar changes to match. If
the date is written in any other format than the one shown in Figure 3-18, it
is accepted and recognized but is changed automatically to the date format
shown in the figure.

Note that neither the | abel Commands nor the usePopup slot is necessary
with this proto. The pop-up menu is specified in the newt Dat eFi | t er.

Slot descriptions
access

| abel

pat h

Optional. Defaults to ' r eadOnl y. Valid values include
'readWiteand' pi ckOnly. Do not change this
value for the built-in protos, or they will not work as
expected.

Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

Required. A path expression that leads to a slot with a
date in it, of the form

[pat hExpr: soupSynbol , ' aDat e]

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

flavor Set to newt Dat eFi | t er ; do not change this, or the
proto will not work as expected.

newtROLabelDatelnputLine

This is the same as the newt Label Dat el nput Li ne except that it is used to
display, not edit, a date from a soup slot. As with all the read-only input-line
protos, the dotted line disappears when it is displayed. An example is shown
in Figure 3-19.

Figure 3-19 A newt ROLabel Dat el nput Li ne proto

Date: Hﬂ-}' 12, 199

Slot descriptions

| abel Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

pat h Required. A path expression that leads to a slot with a

date in it, of the form

[pat hExpr: soupSynbol, 'abDate]

flavor Set to newt Dat eFi | t er ; do not change this, or the
proto will not work as expected.

newtLabelSimpleDatelnputLine

This proto accepts simple dates (dates without the year, such as 7/24 and
July 24) in addition to fully specified dates (such as 7/24/88 and July 24,
1988). It is useful for birthday and anniversary fields. The

newt Labl eSi npl eDat el nput Li ne proto is based on the

newt Pr ot oLi ne proto. It is shown in Figure 3-20.

Labelled Input-Line Slot View Protos 3-71

CHAPTER 3

NewtApp Reference

Figure 3-20 The simple date input line

3-72

Slot descriptions
access

| abel

pat h

flavor

. February B

s mm t w t f s

12 3
4 56 7 8 910
111213141516 17
1819 20 21 22 23 24
25 26 g 28 29

................................. #Date | =)

Optional. Defaults to ' r eadW i t e. Valid values
include ' readOnl y, and ' pi ckOnl y. Do not change
this value for the built-in protos, or they will not work
as expected.

Optional. Defaults to the empty string. Provide a string

containing the text you wish to display in the input-line
label.

Required. A path expression that leads to a slot with a
date in it, of the form:

[pat hExpr: soupSynbol, 'birthday]

Set to newt Si npl eDat eFi | t er ; do not change this, or
the proto will not work as expected.

newtNRLabelDatelnputLine

This proto is based on newt Pr ot oLi ne and allows date input through a
system-provided pr ot oDat ePopup picker. The initial display is simply the
label with a diamond to its left and no input line following it. Once a date

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

has been displayed,

any attempt to edit it causes the date picker to display. It

is shown in Figure 3-21.

Figure 3-21 Date input with picker-only access

4§ MNovermber 1995 o

= m t w t f
1 2 3
S 65 7 2 910
121214 @16 17
10202122 23 24
26 27 28 29 30

1995

L]

4
11
18
25

X epate November 15, 1995

Slot descriptions
access

fl avor

| abel

pat h

Optional. Defaults to ' pi ckonl y. Valid values include
‘readWite,' readOnly, and ' pi ckOnl y. Do not
change this value for the built-in protos, or they will not
work as expected.

Set to newt Dat eFi | t er ; do not change this, or the
proto will not work as expected.

Optional. Defaults to the empty string. Provides a string
containing the text you wish to display in the input-line
label.

Required. A path expression that leads to a slot with a
date in it, of the form:

[pat hExpr: your SoupSynbol , ' date]

Labelled Input-Line Slot View Protos 3-73

CHAPTER 3

NewtApp Reference

newtROLabelTimelnputLine

This proto is based on newt Pr ot oLi ne and is set to display a time. No
input or editing is recognized.

Slot descriptions
| abel Optional. A string which labels the input line.

pat h Required. A path expression, that leads to a slot with a
time in it, of the form

[pat hExpr: soupSymbol, 'tine]

flavor Set to newt Ti meFi | t er ; do not change this, or the
proto will not work as expected.

newtNRLabelTimelnputLine

This allows date input through a system-provided pr ot oTi mePopup picker
only. The picker is specified by the newt Ti meFi | t er, which is the value of
its f | avor slot. You should not change this or the proto will not work as
expected. It is based on newt Pr ot oLi ne. It appears as shown in Figure 3-22.

Figure 3-22 Time input with picker-only access

3-74

Slot descriptions

| abel Optional. A string that labels the input line.

fl avor Set to newt Ti meFi | t er ; do not change this, or the
proto will not work as expected.

access Defaults to' pi ckOnl y, canbe ' readOnl y.

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

newtLabelTimelnputLine

This proto provides a labelled input line for a time. When it initially displays,
the line is blank and a diamond appears to the left of the label. When the
label is tapped, a time picker displays. It is shown in Figure 3-23.

Figure 3-23 A newt Label Ti nel nput Li ne proto

Slot descriptions
| abel Optional. A string that labels the input line.

flavor Set to newt Ti meFi | t er ; do not change this, or the
proto will not work as expected.

pat h Required. Must be a path expression identifying a soup
slot that holds a time.

newtNRLabelDateNTimelnputLine

This proto is set up to contain times and dates, and is based on

newt Pr ot oLi ne. Depending on which of the two slots, | ongFor mat or
short For mat, is non-ni |, this proto displays either long or short dates,
such as 10:05 AM, or 10:10 AM. For more information about these formats,
which are used in calls to LongDat eSt r and Short Dat eSt r, see “Date and
Time Format Specifications” (page 17-11).

Slot descriptions

flavor Set to newt Dat eNTi meFi | t er ; do not change this, or
the proto will not work as expected.
access Defaults to ' pi ckOnly canbe ' readOnly.

Labelled Input-Line Slot View Protos 3-75

3-76

CHAPTER 3

NewtApp Reference

pat h

| ongFor nmat

short For nat

Required. Must be a path expression identifying a soup
slot that holds a date and time.

Optional. Defaults to year Mont hDay St r Spec. The

| ongdat e specification as defined by the system. Either
this slot or the shor t For mat slot should be non-ni | so
the view can choose the format.

Optional. Defaults to ni | . Thisis a shor t dat e
specification as defined by the system. Either this slot or
the | ongFor mat slot should be non-ni | so the view
can choose the format.

newtLabelPhonelnputLine

This proto formats numbers as phone numbers, just like the
newt Text PhoneVi ew (page 3-56), except that this proto has a label. It is
based on newt Pr ot oLi ne.

Slot descriptions
flavor

access
| abel

usePopup

menory

Set to newt PhoneFi | t er; do not change this, or the
proto will not work as expected.

Defaultsto' readWite.

Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input-line
label.

Optional. Defaults to t r ue. When set to t r ue, the
input-line label displays a diamond, indicating a picker
(pop-up menu).

Optional. Defaults to ni | . This keeps track of the most
recent choices and displays them as items in the picker.
The value of this slot is a symbol that names the list. The
symbol must incorporate your developer signature.

Labelled Input-Line Slot View Protos

CHAPTER 3

NewtApp Reference

newtAreaCodelLine

This proto is for numbers only and specifically for area codes.
Double-tapping the input line displays the phone keyboard. It is based on
newt Pr ot oLi ne.

Slot description

flavor Set to newt PhoneFi | t er ; do not change this, or the
proto will not work as expected.

access Defaultsto' readWi te.

| abel Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the area code
line label.

path Required. Must be a path expression identifying a soup

slot that holds a area code.

newtAreaCodePhoneLine

Allows area code input, as well as phone number input. It contains the basic
functionality for parsing phone numbers, and for updating, targeting,
drawing, and setting up the views in which they occur. It is based on

newt Pr ot oLi ne.

Slot descriptions

path Required. The slot identified by this path expression is
the slot from which the initial text to display in this
view is gotten, and in which the final value is to be

stored.

flavor Set to newt PhoneFi | t er ; do not change this, or the
proto will not work as expected.

access Defaults to ' query

| abel Optional. Defaults to the empty string. Provide a string

containing the text to display in the input-line label.

Labelled Input-Line Slot View Protos 3-77

CHAPTER 3

NewtApp Reference

newtSmartNameView

This proto gets names from the Names application soup. It is based on
newt Pr ot oLi ne, so it also implements a label. When you use it, a tap on
the picker menu item Other displays the pr ot oPeopl ePopup picker with
the names from the Names soup. If you wish to control this behavior, you
may implement your own version of the Janfr onEnt r y method. See the
sample in the section, “Creating a Custom Labelled Input-Line Slot View”
(page 4-24) in Newton Programmer’s Guide.

Slot descriptions

fl avor Set to newt Smar t NareFi | t er ; do not change this, or
the proto will not work as expected.

access Defaults to' readWite.

| abel Optional. Defaults to the empty string. Provide a string
containing the text you wish to display in the input line
label.

usePopup Optional; the defaultis ni | . If t r ue, the proto creates a

pop-up menu under the label. If the user chooses an
item in the pop-up menu that item is displayed on the
input line and the value of the target is changed to refer
to the chosen soup entry. If the user chooses the menu
item, Other, the pr ot oPeopl ePi cker is displayed,
allowing a choice from that soup.

pat h Required. A path expression leading to the slot in the
application soup where data changes should be stored.

3-78 Labelled Input-Line Slot View Protos

CHAPTER 4

Stationery Reference

This chapter documents the data structures, protos, and functions relevant to
using dataDefs and viewDefs.

Data Structure

This section documents the viewDef frame.

viewDef Frame

You create a viewDef by basing it on a general view proto or class, such as a
cl Vi ew and adding the slots specified here. Note that once the viewDef has
been created it must be added to an application by using a

newt St at i oner yVi ewproto, as described in Chapter 4, “NewtApp
Applications,” in Newton Programmer’s Guide.

Slot descriptions

type Required. The view types' edi tor,"' vi ewer, and
' rout eFor mat are used by the system and the built-in
applications to collect specific kinds of viewDefs. For

Data Structure 4-1

4-2

CHAPTER 4

Stationery Reference

instance, the Newton routing code collects viewDefs of
type ' rout eFor mat (and ' pri nt For mat, for
compatibility) and offers them as choices in the Format
picker within the routing slip. You may also define
custom types for your application.

symbol Required. A symbol that identifies this view for the
dataDef. One viewDef for each dataDef must have the
synbol slotsetto’ def aul t. This symbol is saved as a
convenient reference by which to retrieve the view.

nane Required. A string that is used to build menus like the
Show menu. An example of a suitable value is " Not e" .

versi on Required. This integer should match the version
number of the dataDef.

vi ewDef Hei ght Required, except in card-style applications. An integer
that specifies a default height for applications that
display data in a roll format. This value is not used by a
card-style NewtApp application.

The following methods are used with viewDefs.

MinimalBounds

myViewDef: M ni mal Bounds(entry)
Returns the minimal enclosing bounding box for the data in a soup entry.
entry A soup entry.

In a viewDef, you must use the M ni mal Bounds method if the height of the
entry is dynamic, as it is in a paper roll-style application. This method is not
necessary for a card-style application, which has a fixed height. If the entry
size is static, use the vi ewDef Hei ght slot instead.

SetupForm

targetViewDef: Set upFor n{ entry, entryView)

Allows you to modify the data displayed by a viewDef before it is displayed.
This function is called by the Vi ewSet upFor nScr i pt method of the entry

Data Structure

Protos

CHAPTER 4

Stationery Reference

view containing the viewDef to be displayed. Override this method to
modify the data before it’s instantiated.

entry The target soup entry.
entryView The target view, in which the soup entry is about to be
displayed.

This section describes the newt St at i onery proto, which is used to
construct a dataDef, and the stationery button protos.

newtStationery

You use this proto as the template when constructing a dataDef. Its basic
function is to create the infrastructure for specified kinds of data; it is not a
view proto.

Slot descriptions

description Optional. A string describing this dataDef’s data entry.
An exampleis " Li ned note paper". Thisis used in
the Information slip (newt | nf oBox proto), which is
seen when the icon on the header bar is tapped.

hei ght Required, except in card-style applications. This is the
default height used by viewers that display the data
type in a paper-roll format, like the built-in Notes
application. This value should match the value in the
vi ewDef Hei ght slot of the viewDef. It is not used by a
card-style NewtApp application.

i con Optional; a bitmap frame. If you provide an icon for this
dat aDef, it is used in the New menu (the
newt NewSt at i oner yBut t on proto); the header bar
(newt Ent r yRol | Header); and in the Information slip

Protos 4-3

CHAPTER 4

Stationery Reference

nane

synbol

super Synbol

vVer si on

(newt | nf 0Box proto), which is seen when the icon on
the header bar is tapped.

Required. This string appears in the New button’s
picker to identify the dataDef. The New button
(implemented by the newt NewSt at i oner yBut t on
proto) collects all the strings from the nane slots of the
registered dataDefs that have the same super Synbol
slot value and displays them as items in the New picker.
For example, the Notes application uses the string

"Not e" to identify one of its dataDefs.

Required. A unique symbol that identifies the data type
(also known as the class) of the entries that are created
using this dataDef. The example in this chapter uses the
constant kDat aSynbol , set to the value of
kAppSynbol , as the value of both this slot and an
optional cl ass slot within the entry template.

The value of the synbol slot is used by a

newt St at i onery view to select the viewDef and
dataDef to use for a given entry.

Required. A unique symbol used to identify the
application with which this dataDef should be
associated. The value of this slot must match the value
of a super Synbol slot in the host application.

Required. This integer identifies the version number of
the viewDef.

The following methods are defined in newt St at i onery.

FillNewEnNtry

myDataDef: Fi | | NewEnt r y(newEntry)

Returns a modified soup entry when given a new entry as returned by the
Cr eat eBl ankEnt r y method.

newEntry

Protos

A frame that is a soup entry, as returned by the

Cr eat eBl ankEnt r y method (page 3-5), which is
defined in the newt Appl i cati on. al | Soups slot of a
NewtApp application.

CHAPTER 4

Stationery Reference

You should use this method to add a ¢l ass slot value and the other
application-specific data structures you require to the entry. It is
recommended that you put application-specific data structures in a slot
embedded within the entry. For an example of this, see “Using
FillNewEntry” beginning on page 5-6 in Newton Programmer’s Guide.

MakeNewEntry
myDataDef: MakeNewEnt ry()

Returns a frame that will be added to some soup to make an entry. This
method is used only if Fi | | NewEnt ry does not exist. However, it is useful if
you are creating stationery as an auto part instead of as part of a NewtApp
application. Furthermore, if the application using this dataDef has no

Cr eat eBl ankEnt r y method, then MakeNewEnt ry is called.

StringExtract

myDataDef: St ri ngExt r act (entry, nLines)

Called by overviews and Find to get a string description of an entry for
display in an overview. You must supply a version of this method that
creates a string description from your soup entry.

entry A soup entry.

nLines An integer specifying if your method should return one
or two lines of text.

TextScript

myDataDef: Text Scri pt (item, target)

Extracts a text version of an entry for use by routing (for example, as an
e-mail message).

item The In/Out Box item frame. The data being routed is
stored in the body slot of this frame. Because the body
slot might contain an alias constructed by the Routing
interface, in order to access it you should always call the
Resol veBody routing format method (page 18-15) on

Protos 4-5

4-6

CHAPTER 4

Stationery Reference

item. Resol veBody returns the data in the body slot
whether or not it is referenced by an alias.

target The soup entry that is being routed.

This method must return a string containing the data you want to be routed
from the soup entry.

newtStationeryPopupButton

This button proto is used as the basis for both the
newt NewSt at i oner yBut t on and the newt ShowSt at i oner yBut t on; the
former displays a list of dataDefs, and the latter a list of viewDefs.

The newt St at i oner yPopupBut t on is based on the pr ot oPopupBut t on,
thus incorporating the necessary functionality for creating a picker for the
stationery buttons. It also includes the St at Scri pt method, which you
must define to assign an action to a picker choice, and the Set UpSt at Ar r ay
method, which you may override to intercept or tweak the stationery items
before they are displayed in the picker.

The methods Bui | dPopup and Vi ewSet upFor n5cri pt are defined
internally to newt St at i oner yPopupBut t on. If you need to use one of
these methods, be sure to call the inherited method first (for example,

i nheri ted: ?Vi ewSet upFor nScri pt ()); otherwise the proto may not
work as expected.

A WARNING

Do not override the internally defined methods
Buttond i ckScri pt, Pi ckActionScri pt, and
Pi ckCancel | edScript. a

Protos

CHAPTER 4

Stationery Reference

Slot descriptions
t ext

form

synbol s

types

sorter

shortCircuit

Protos

Required. A string that is the text displayed in the
button. An example is " New" .

Required. A symbol that determines which form of
stationery is shown in the picker. Specify either
"vi ewDef or' dat aDef .

Optional. Specifies the list of stationery to display in the
picker. This slot defaults to ni | , which indicates that all
stationery of the kind indicated in the f or mslot are to
be displayed in the picker. If you don’t want all the
stationery, you can specify an array of unique symbols.

When collecting viewDefs, specify an array of dataDef
symbols in this slot. All viewDefs registered for those
dataDefs are collected. When collecting dataDefs,
specify an array of super Synbol symbols. In this case,
all dataDefs whose super Synbol slot matches one of
the specified symbols are collected.

Required when the f or mslot is set to * vi ewDef . This
slot indicates which types of viewDefs are to be
included in the picker. This slot must contain an array of
viewDef type symbols, for example: [* vi ewer,
"editor, 'synbol YouDefi ned].

This slot is ignored if the f or mslot is set to ' dat aDef .
The default value of this slotis ni | .

Optional. The default is the symbol ' | st r <| for sorting
in alphabetical order. Set to ni | to prevent sorting.

This slot can be set to any of the string sort tests defined
for the test parameter in “Sorted Array Functions”
(page 23-43).

Optional. A Boolean that controls the pop-up behavior
of the button. This slot defaults to t r ue. When it is set
to t r ue and there is only one item in the stationery
picker array, the diamond normally displayed to the left
of the text in the button is not shown. Tapping the
button does not display a picker but instead causes the

4-7

4-8

CHAPTER 4

Stationery Reference

action to occur with the single item. Set this slot to ni |
if you prefer a picker list with one item.

The following methods are defined in this proto.

SetUpStatArray

popupButton: Set UpSt at Array/()

Returns a list of stationery to display in the picker. Override this method to
change or intercept what is displayed in the picker.

The default method returns the stationery array to be used in the picker by
calling the Get Def s function (page 4-14) with the values you provide for the
formsymnbol s, and t ypes slots as its parameters.

StatScript

popupButton: St at Scri pt (stationeryltem)

Called when an item is chosen from the stationery picker. This method
should perform an action appropriate for the chosen stationery item.

stationeryltem The stationery that corresponds to the item chosen from
the popup menu. It can be either a viewDef or a
dataDef, depending on which is specified in the f or m
slot.

newtNewStationeryButton

This proto implements the New button. This button collects the dataDef
stationery for your application and includes them in a picker that is
displayed when the user taps the New button. If an icon exists for a dataDef,
it is also displayed in the picker list, next to the stationery name.

If there is only one dataDef for your application, the default behavior of this
button is to hide the diamond that indicates it’s a picker. If more than one
dataDef exists for the application, the diamond appears at the left of the
button. You can control this behavior by changing the short G r cui t slot
(page 4-7). An example of this can be seen in the built-in Calls application,

Protos

CHAPTER 4

Stationery Reference

where the New button is used to create a New entry and display a blank
page. The Calls application menu bar is shown in Figure 4-1.

Figure 4-1 Calls application menu bar

@11‘:&. === New H Place cal Ed

When a picker item is chosen, the proto (through the St at Scri pt method)
adds a new entry (defined by the dataDef) to the application soup and
displays the blank entry. If you wish to perform other actions when the user
chooses an item, override the St at Scri pt method (inherited from the
newt St at i oner yPopupBut t on proto) and be sure to call the inherited
method in your code.

The newt NewSt at i oner yBut t on picker that appears in the built-in Names
application is shown in Figure 4-2.

Figure 4-2 newt NewSt at i oner yBut t on in Names

‘n’ Person
Company

T;:;_'|’ Group

The newt NewSt at i oner yBut t on proto is based on
newt St at i oner yPopupBut t on, and thus inherits its methods and slots.

newtShowStationeryButton

This proto implements the Show button. This button collects the viewDef
stationery for your application and includes them in a picker that is

Protos 4-9

CHAPTER 4

Stationery Reference

displayed when the user taps the Show button. If an icon exists for a
viewDef, it is also displayed in the picker list, next to the stationery name.

If there is only one viewDef for your application, the default behavior of this
button is to hide the diamond that indicates it’s a picker. If more than one
viewDef exists for the application, the diamond appears at the left of the
button. You can control this behavior by changing the short Gi rcui t slot
(page 4-7).

You should use a Show button when you want to be able to extend your
application with multiple views of the data. For instance, you may wish to
allow a choice between an informational view and an editable view, in which
the user can enter notes, as shown in Figure 4-3.

Figure 4-3 newt ShowSt at i oner yBut t on

4-10

Y UOMe Info
[F+New JREZETE UOMe Notes IEAf1X]

When a picker item is chosen, that viewDef is displayed and a checkmark is
placed next to the picker item to indicate which is the current viewDef. If you
wish to perform other actions when the user chooses an item, override the

St at Scri pt method (page 4-8) inherited from the

newt St at i oner yPopupBut t on proto, and be sure to call the inherited
method in your code.

The newt ShowSt at i oner yBut t on proto is based on
newt St at i oner yPopupBut t on, and thus inherits its methods and slots.
The following slot is different.

Protos

CHAPTER 4

Stationery Reference

Slot description

types This slot indicates which types of viewDefs are to be
included in the picker. This slot must contain an array of
viewDef type symbols, for example: [* vi ewer,
"editor, 'synbol YouDefi ned].

The default value of this slotis[' vi ewer, 'editor].

newtRollIShowStationeryButton

This Show button is based on the newt ShowSt at i oner yBut t on; this
version is meant to be used within a page- or roll-style application. It has all
the same slots and methods as newt ShowSt at i oner yBut t on.

Again, if you wish to modify the St at Scri pt method (page 4-8), make sure
to call the inherited method.

newtEntryShowStationeryButton

This Show button is based on the newt ShowSt at i oner yBut t on; this
version is meant to be used within the entry view of an application. Like the
newt ShowSt at i oner yBut t on, it allows the user to change the viewDef
being displayed. However, unlike that proto, this occurs for only the entry
being displayed. This enables a different view for each entry. For instance,
one entry might be a note, while another might be an information view.

Functions

This section describes global functions used to register stationery
components and retrieve information about them.

Functions 4-11

4-12

CHAPTER 4

Stationery Reference

RegDataDef

RegDat aDef (dataDefSym, newDefTemplate)

Registers a dataDef with the system. The return value of this function is
undefined and you should not rely on it.

If you build an application using the NewtApp framework protos, the base
view proto, newt Appl i cat i on, automatically registers any dataDefs you
create by using the values you put in its al | Dat aDef s slot. For more
information see “Registering DataDefs and ViewDefs” beginning on

page 4-20 in Newton Programmer’s Guide.

dataDefSym The symbol that uniquely identifies the dataDef you
wish to add to the system registry. The symbol is the
value of the dataDef’s synbol slot. An example of an
appropriate valueis' | | QU: Pl EDTS]

newDefTemplate The dataDef template. If you've defined the dataDef in a
layout file in NTK, the template may be obtained with a
call like this:

CGet Layout ("i ouDat aDef ") ;

UnRegDataDef

UnRegDat aDef (dataDefSym)

Unregisters a dataDef registered by RegDat aDef . The return value of this
function is undefined and you should not rely on it.

dataDefSym The symbol that uniquely identifies the dataDef you
wish to remove from the system registry. The symbol is
the value of the dataDef’s synbol slot.

Functions

CHAPTER 4

Stationery Reference

RegisterViewDef
Regi st er Vi ewDef (viewDef, dataDefSym)

Registers a viewDef view template or routing format frame under the unique
identifying symbol of its corresponding dataDef in the system registry. The
return value of this function is undefined and you should not rely on it.

viewDef The viewDef view template or routing format frame.

dataDefSym The symbol identifying the dataDef associated with this
viewDef. This symbol corresponds to the class of data
with which this viewDef or routing format can be used.

If you build an application using the NewtApp framework protos, the base
view proto, newt Appl i cat i on, automatically registers any viewDefs you
create by using the values you putinits al | Vi ewDef s slot. For more
information see “Registering DataDefs and ViewDefs” beginning on

page 4-20 in Newton Programmer’s Guide.

If you are building an auto part extension, use a line of code like the
following inits I nst al | Scri pt function:

Regi st er Vi ewDef (Get Layout (" def aul t Vi ewDef "), kDat aSynbol) ;

UnRegisterViewDef
UnRegi st er Vi ewDef (viewDefSym, dataDefSym)

Removes a viewDef or routing format frame from the system registry. The
return value of this function is undefined and you should not rely on it.

viewDefSym The symbol identifying the viewDef or routing format.
This is the value of the synbol slot in the viewDef or
routing format frame.

dataDefSym The symbol under which the viewDef or routing format
was registered.

Functions 4-13

CHAPTER 4

Stationery Reference

GetDefs

Get Def s(form, symbols, types)

Returns an array of dataDef or viewDef stationery that match the specified
criteria.

form This symbol determines which of the stationery forms is
returned. Specify either ' vi ewDef or' dat aDef .

symbols Specifies the list of stationery to return. Specify either
ni | or an array of symbols. The value ni | causes this
function to return all stationery of the kind indicated by
the form parameter. If you don’t want all the stationery,
you can specify an array of unique symbols to select
particular stationery.
When collecting viewDefs, specify an array of dataDef
symbols in this slot. All viewDefs registered for those
dataDefs are returned. When collecting dataDefs,
specify an array of super Synbol symbols. In this case,
all dataDefs whose super Synbol slot matches one of
the specified symbols are returned.

types Indicates which types of viewDefs are to be returned.
This parameter is used only when the form parameter is
setto' vi ewDef . It is ignored if the form parameter is
setto' dat aDef .

When the form parameter is set to ' vi ewDef , types can
be ni | or an array of symbols identifying viewDef
types to return. The symbols you specify in the array
may be any of the built-in symbols (' vi ewer, ' edi t or,
or' rout eFor mat), or they may include symbols you
define. Here is an example of a types array: [' vi ewer,
"editor, 'synbol YouDefi ned].

Specifying a ni | value causes this function to return
viewDefs of all types.

4-14 Functions

CHAPTER 4

Stationery Reference

GetDataDefs

Get Dat aDef s(dataDefSym)
Returns a dataDef, given the value of its synmbol slot.
dataDefSym The value of the synbol slot of a dataDef.

The following example uses the symbol defined for the built-in Notes
application:

Get Dat aDef s(' paperrol |)

{_proto: {synmbol: NIL,
super Synbol : NI L,
name: "",
description: "",
icon: {@®9},
version: O,
hei ght: 200,
met adat a: NI L,
MakeNeweEntry: <function, 0 arg(s) #4277B9,
M ni mal Bounds: <function, 1 arg(s) #4277D9,
Set upForm <function, 2 arg(s) , #4277F9
StringExtract: <function, 2 arg(s), #427819
textScript: <function, 2 arg(s) #427839>},
synbol : paperrol |,
name: "Note",
super Synbol : not es,
description: "Note",
icon: {bits: <bits, length 76>,
bounds: {#37B700}},
version: 1,
met adat a: NI L,
MakeNewEnt ry: <function, 0 arg(s) #467251>,
StringExtract: <function, 2 arg(s) #467271>,
textScript: <function, 2 arg(s) #467291>}

Functions

4-15

4-16

CHAPTER 4

Stationery Reference

GetAppDataDefs

Get AppDat aDef s(superSymbol)

Returns an application’s dataDefs when passed the value of the
super Synbol slot of that application.

superSymbol The value of the super Synbol slot defined in an
application.

GetEntryDataDef

Get Ent r yDat aDef (soupEntry)
Returns a dataDef for a given soup entry.

soupEntry The soup entry whose dataDef you want to get.

GetEntryDataView

Cet Ent r yDat aVi ew(soupEntry, viewDefSym)
Returns a viewDef for a given soup entry.
soupEntry The soup entry whose viewDef you want to get.

viewDefSym A symbol identifying a viewDef. This is the value of the
synbol slot of a viewDef.

GetViewDefs

CGet Vi ewDef s(dataDefSym)

Returns a frame containing the viewDefs that are registered for a particular
dataDef. If none are found, this function returns ni | .

dataDefSym A symbol identifying a dataDef. This is the value of the
synbol slot of a dataDef.

Functions

CHAPTER 4

Stationery Reference

GetDataView
Get Dat aVi ew(dataDefSym, viewDefSym)

Returns a specific viewDef registered for a particular dataDef.

dataDefSym A symbol identifying a dataDef. This is the value of the
synbol slot of a dataDef.

viewDefSym A symbol identifying a viewDef. This is the value of the
synbol slot of a viewDef.

Functions 4-17

CHAPTER 5

Pickers, Pop-up Views, and
Overviews Reference

Data Structures

The pr ot oLi st Pi cker uses a specialized data structure called a name
reference and also has an array of column specification frames.

Name References

A name reference is a wrapper for a soup entry. A name reference has the
following structure:

| ocal aNanmeRef := {
class: datad ass, usually a subclass of 'naneRef
_unsel ected: true or nil,
<application defined slots>,

b

Data Structures 5-1

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Slot descriptions
cl ass

_unsel ected

A symbol specifying a registered data definition that
can interpret the name reference. This is usually just
' naneRef or a subclass of a name reference.

A Boolean that determines whether an item is displayed
as selected (in other words, checked) or not. By default,
adding a name reference to the array of selections
causes the name reference to be displayed as selected.
However, if this slot is present and non-ni | , the name
reference is displayed with its checkbox unchecked.

This slot is useful if items are displayed for which no
entry exists in the soup, and which should not be
selected. For example, the system uses this slot when
there are several possible locations for a meeting but
only one can be chosen (si ngl eSel ect is true), and
an item must be added to the list for each person
attending the meeting. See the description of the

sel ect ed slot in the description of

pr ot oPeopl ePi cker for more details.

Name references also have several global functions:

s The | sNaneRef function determines whether a given item is a name

reference.

s The Al i asFr onbj function returns an entry alias for an object.

» The Ent r yFr onbj function returns the entry.

s The Qbj Ent r yd ass function returns the class of an entry (returned by
the Ent r yFr onObj function).

All these functions can be passed an alias, an entry, or a name reference. (If
you pass any other type of object, the resultisni | .)

To make a name reference, you can use the MakeNaneRef method, as shown
in the following example:

pi cker Def . MakeNanmeRef := func(item datad ass) begin
| ocal naneRef: = : MakeCanoni cal NameRef (it em dat aCl ass);

Data Structures

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

if IsFrame(item) AND | sArray(nanmeRef.otherPrices) then
Sort (naneRef.otherPrices, '"|<|, nil);
nanmeRef ;
end;

Column Specifications

A picker list for a pr ot oLi st Pi cker is defined by an array of column
specifications; each specification is a frame with the following slots.

Slot descriptions

tapW dt h Required. An integer that specifies the width of the
column. If this value is zero or negative, it’s interpreted
as a distance from the right margin of the view; if
positive, it’s considered a true width.

fieldPath Required. A symbol uniquely identifying the field that
should be displayed in this column. This list picker uses
this symbol to retrieve the data, and (in most cases,
including the default case) is the actual path in the entry
to the data field desired. However, it is possible to use
the symbol purely as a marker—for example if the
particular data required is a calculated aggregate of a
number of data fields—as long as all the routines in the
data definition that use this symbol are overridden to
recognize this usage.

opti onal Optional. This slot tells the list picker that the contents
of this field must be non-ni | before the item may be
selected. If opt i onal is not set and the data specified
by the fi el dPat h is ni |, when an attempt to select the
item is detected, the user is given the opportunity to fill
in this field.

Data Structures 5-3

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

General Pickers

This section describes general-purpose pickers and pop-up views.

protoPopupButton

This proto is a text button that displays a picker when tapped. The button is
highlighted while the picker is open. The picker appears to the right of the
button if there’s room; otherwise it appears to the left or slightly overlapping
the button.

Figure 5-1 illustrates a pop-up button, without and with a picker.

Figure 5-1 Pop-up button and picker

*+Popup Buttos e

Fiwo
three

I: Papup Button |

Button Affer buthon i Epped, itis highlighbed
and picker is shown b Ehe right of it

The Vi ewd i ckScri pt method is used internally in the
pr ot oPopupBut t on and should not be overridden.

The pr ot oPopupBut t on uses pr ot oText But t on as its proto;
pr ot oText But t on is based on a view of the cl Text Vi ewclass.

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vd i ckabl e.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

vi ewBounds Set to the size and location where you want the button
to appear. If you do not set this slot, the button appears
seven pixels to the right of its sibling. It is designed to
be placed next to another button—in the status bar, for
example.

vi ewJustify Optional. The default setting is vj Si bl i ngRi ght H +
vj CenterH + vj CenterV + onelLi neOnly.

t ext A string that is the text inside the button.

popup An array of items to be displayed in the picker list. See
“Specifying the List of Items for a Popup” (page 6-37) in
Newton Programmer’s Guide for more information.

ButtonClickScript

picker: But t onC i ckScri pt ()

This method is called when the button is tapped. You can use this method if
you want to construct the popup array dynamically. After setting the value
of the popup slot, call the inherited but t onCl i ckScri pt to preserve the
pop-up behavior of the view. For example,

i nherited: buttonC ickScript().

PickActionScript

picker: Pi ckActi onScri pt (index)
This method is called when an item is selected from the picker list.

index The index of the item that was chosen from the popup
array.

If you don’t supply this method, the button is simply unhighlighted. If you
do supply this method, call the inherited method to unhighlight the button.
For example, i nheri t ed: Pi ckActi onScri pt (index) .

If no item is selected because the user taps outside the list, the
Pi ckCancel | edScri pt method is called instead.

General Pickers 5-5

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the picker is cancelled by a tap outside it. If you
don’t supply this method, the button is unhighlighted. If you do supply this
method, call the inherited method to unhighlight the button. For example,

i nherited: Pi ckCancel | edScri pt ().

protoPopinPlace

This proto is a text button that displays a picker when it is tapped. When an
item is chosen from the picker, the text of the chosen item appears in the
button. Figure 5-2 shows an example of a pr ot oPopl nPl ace text button.

Figure 5-2 A pr ot oPopl nPl ace text button

Bubon

5-6

*FopinFlace §3 g38td)]
Second Item

Third Item tThed ke

After button is tapped, After Tem B chosen from
rcker is shown o bep of L ket Eis showen in button

Note that the Vi ewSet upFor nScri pt is called multiple times; use the
Vi ewSet upDoneScr i pt to provide the initial text.

Also note that the Vi ewd i ckScri pt and Butt onC i ckScri pt methods
are used internally; if you need to use one of these methods, be sure to call
the inherited method.

The pr ot oPopl nPI ace proto uses the pr ot oText But t on as its proto;
pr ot oText But t on is based on a view of the cl Text Vi ewclass.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Slot descriptions

vi ewBounds Set to the size and location where you want the button
to appear. Note that the right bounds value is set
automatically, based on the length of the text.

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vC i ckabl e.

vi ewJustify Optional. The default setting is vj Center H +
vj CenterV + nolLineLimts.

t ext A string that is the text inside the button. This string
must not begin with a space. Note that this string will
be modified.

popup An array of items to be displayed in the picker list. See

“Specifying the List of Items for a Popup” (page 6-37) in
Newton Programmer’s Guide for more information.

PickActionScript

picker: Pi ckActi onScri pt (index)
This method is called when an item is selected from the picker list.

index The index of the item that was chosen from the popup
array.

If you don’t supply this method, the button is unhighlighted. If you do
supply this method, call the inherited method to unhighlight the button. For
example, i nheri t ed: Pi ckActi onScri pt (indes) .

If no item is selected because the user taps outside the list, the
Pi ckCancel | edScri pt method is called instead.

PickCancelledScript
picker: Pi ckCancel | edScri pt ()

This method is called if the picker is cancelled by a tap outside it. If you
don’t supply this method, the button is unhighlighted. If you do supply this
method, call the inherited method to unhighlight the button. For example,

i nherited: Pi ckCancel | edScript ().

General Pickers 5-7

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoLabelPicker

This proto is a label that displays a picker when it is tapped. The picker list
can consist of simple strings, icons with strings, bit maps, or a
two-dimensional grid (see “Specifying the List of Items for a Popup”

(page 6-37) in Newton Programmer’s Guide). If the items are simple strings, the
currently selected item is shown with a check mark next to it. The user can
select a different item from the picker and that choice appears next to the
label. Figure 5-3 shows an example.

Figure 5-3 A Prot oLabel Pi cker

5-8

Folder or file: [0 Serendipity

Current choice ———°
shown next bo

ke | {optionally

includes icon, iF

Lsed in picker list)

Q Serendipity

Menu of choices ——| 3 Surreptitious
oS Up

@ Subterranean

@ Sunny
@ Surly

The following methods are defined internally: Vi ewSet upFor nScri pt,
ViewH |iteScript,ViewdickScript,PickActionScript,and

Pi ckCancel | edScri pt.If you need to use one of these methods, be sure
to call the inherited method also (for example,

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

i nherited: Vi ewSet upFor nScri pt ()), otherwise the proto may not
work as expected.

Note that inking is automatically turned off when the view based on this
proto is tapped.

The pr ot oLabel Pi cker uses prot oSt ati cText as its proto;

prot oSt ati cText is based on a view of the cl Par agr aphVi ewclass. The
prot oLabel Pi cker itself implements the label portion of the proto. It has
one child view, also a pr ot oSt at i cText view, that implements the text
value portion of the proto. This child view is named ent ryLi ne.

Here is an example of a template using pr ot oLabel Pi cker:

nyPicker 1= {...
_proto: protolLabel Pi cker,
vi ewBounds: Rel Bounds(10, 60, screenWdth-100, 16),
text: "Folder or file:"
| astchoice: nil,
| abel Commands: [
{item"Serendipity", icon:folder, indent:25},

{item™"Surreptitious", icon:folder},
' pi ckSepar at or

{item " Subt erranean", icon:doc},
{item " Sunny", icon:doc},
{item"Surly", icon:doc}],

t ext Set up: func()
|ast Choice.item // retrieve the |ast choice

i conSetup: func()
| ast Choi ce. i con

Label ActionScript: func(index)
| ast choi ce: =l abel Cormmands[i ndex].item//store choice

-}

General Pickers 5-9

5-10

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Slot descriptions
vi ewBounds

t ext

| abel Conmands

i conBounds

i conl ndent

Set to the size and location where you want the label
with its item to appear. Note that if you use horizontal
sibling-relative justification, you normally would
specify relative values for the left and right bounds. For
this proto, however, you must specify left and right
bounds values whose difference equals the actual view
width. The bounds values are used to calculate the
width of the view that holds the text item.

A string that is the text label. The label is drawn with a
diamond to its left, to indicate to the user that this is a
picker.

An array of items that are the choices to be displayed in
the picker. You can specify an array of strings, or you
can specify an array of frames if you want the list items
to appear as icons with strings. In the latter case, each
frame represents one list item. See “Specifying the List
of Items for a Popup” (page 6-37) in Newton
Programmer’s Guide for more information on specifying
this list.

When | abel Commands is an array of frames, you may
want to provide the methods Text Set up and

I conSet up. If | abel Comrands is an array of strings,
you need only provide Text Set up.

To include a thin gray separator line, specify the symbol
' pi ckSepar at or. For a thicker black line, specify the
symbol "' pi ckSol i dSepar at or.

Optional. Provide this bounds frame if you want the
icon to appear next to the chosen item when the picker
is not popped up (as in Figure 5-3). Specify the bounds
of the largest icon in the list.

Optional. The distance between the icon and the text

when an icon/string item is shown next to the label. If
you don’t specify this slot, the default is 3 pixels.

checkCurrentltem

General Pickers

Optional. If non-ni |, the currently selected item in the
list, if there is one, is marked with a check mark to its

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

left. If ni | , check marks are not shown. Note that check
marks are not shown for list items that are icons with
strings.

i ndent Optional. The distance, in pixels, to indent the picker
from the beginning of the line (the beginning of the text
label). If you don’t include this slot, the picker is placed
6 pixels to the right of the text label by default.

t ext | ndent The distance from the left side of the view to the textin
the picker list. This is set in the
Vi ewSet upChi | drenScri pt method of the proto.

vi ewFont Optional. The font for the text label. The default is
ROM f ont Syst enBBol d.

entrylLi ne. vi ewfFont
Optional. This is the vi ewFFont slot in the ent ryLi ne
child of the pr ot oLabel Pi cker. It sets the font for the
text field to the right of the label. The default font is
edi t Font 10. This value is valid only at runtime, so if
you want to change it, you need to do so in the
Vi ewSet upFor nScri pt .

LabelActionScript

picker: Label Acti onScri pt (index)

When the user chooses an item from the picker, the new item is displayed
next to the label and this method is called to allow additional processing.

index The index of the item that was chosen from the
| abel Conmands array.

TextSetup

picker: Text Set up()

This method is called to get the initial choice that should be shown next to
the label when the view is being created. This method is passed no
parameters and must return a text string (not a frame). It you don’t include
this method, the first item from the | abel Commands array is used as the
initial item.

General Pickers 5-11

5-12

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

IconSetup

picker: | conSet up()

This method is called to get the initial icon to display next to the label when
the view is being created. This method is passed no parameters and must
return an icon (not a frame). It you don’t include this method, the icon
associated with the first item from the | abel Commands array is displayed.

TextChanged

picker: Text Changed()

This method is called whenever the value of the item is changed. If you don’t
supply this method, no default action occurs.

UpdateText

picker: Updat eText (newltem)

You can call this method to programmatically change the value of the text
item. Note that you don’t normally need to call this method; the text item is
updated automatically when the user makes a selection from the picker.

newltem A string that is the new value for the text item.

Updatelcon

picker: Updat el con(newlcon)

You can call this method to programmatically change the icon. Note that you
don’t normally need to call this method; the icon is updated automatically
when the user makes a selection from the picker.

newlcon A bitmap for the new icon.

PickerSetup

picker: Pi cker Set up()

This method is called when the user taps the label; it gives you a chance to
do your own processing, including setting up the | abel Commands array.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

This method should return non-ni | if you want the default action to occur;
that is, for the picker to pop up. If you return ni |, the picker is not popped
up. You must use this method or something else on your own. If you omit
this method, non-ni | is returned and the default action occurs.

Poplt

picker: Popl t (position)
You can send this message to programmatically pop up the picker.

position The horizontal position of the picker; you should pass
(i ndent -2) for this parameter.

protoPicker

The picker is a list of items (simple strings, bitmaps, two-dimensional grids,
icons with strings, and separator lines) from which the user can choose one
item by tapping it. Figure 5-4 illustrates different kinds of objects displayed
in a picker.

General Pickers 5-13

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-4 Selection of items to choose

5-14

The Vi ewSet upDoneScr i pt method is defined internally. If you need to
use this method, be sure to call the inherited method also (for example,

i nherited: ?Vi ewSet upDoneScri pt ()), otherwise the proto may not
work as expected.

The pr ot oPi cker is based on a view of the cl Pi ckVi ewclass.

Here is an example of a template using pr ot oPi cker:

pi cker :={...
_proto: protoPicker,
bounds: {left:34, top:66, right:96, bottom 96},
vi ewFl ags: vFl oati ng+vReadOnl y+vd i ckabl e,
vi ewFor mat : vf Pen(2) +vf Round(4) +vf Fr ameBl ack+
viFillWite,
pi ckltens: ["one",
"two",
' pi cksepar at or,

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

"t hree",
' pi cksol i dsepar at or,
{bits:punctpict.bits, bounds: punctpict. bounds,
wi dt h: 3, hei ght: 3, cel | Frane: 1, out er Frane: 2},
' pi cksol i dSepar at or
{item"four", icon:iconl, indent:15},
{item"five", icon:icon2},
{item keys}],
Pi ckActionScript: func(itemnm
begin ...end,
Pi ckCancel | edScri pt: func()
Print ("PickCancel | edScript");

Slot descriptions

bounds Must contain a vi ewBounds-like frame specifying a
rectangle. The picker view is created so that one of its
corners corresponds to one of the corners of the
rectangle you specify. However, the system figures out
exactly where to position the view, depending on how
large it is and how much space is available around it.
For example, it would normally be positioned so that its
top-left corner corresponds to the top-left corner of the
rectangle you specify. However, if you specify a location
in the lower-right corner of the screen, where there
won’t be enough room for the picker, it will be
positioned with its lower-right corner corresponding to
the lower-right corner of the rectangle you specify.

Generally, a picker view appears as a result of tapping a
button, word, or some other visible element. In most
cases, simply specify the vi ewBounds slot of that
element as the value of the bounds slot.

vi ewBounds This slot is ignored. Any value you place here is
overwritten by the system, which calculates the value of
this slot when the view is opened. The bounds slot
controls the position of the view. The size of the view is

General Pickers 5-15

5-16

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

\'

\

\'

\

%
p

p

p

p

p

p

p

determined by the width of the widest item and the
total height of all items.

ewrl ags The defaultis vFl oati ng + vReadOnly +
vC i ckabl e.

ewFor mat Optional. The default setting is vf Fr aneBl ack +
vfPen(2) + vfRound(4).

ewJustify Optional. The default setting is vj Cent er H +
vj Cent er \V.

ewFont Optional. The default font for text items in the list is
ROM f ont Syst enil0Bol d.

ewEf f ect Optional. The default view effect is f xPopDownEf f ect .

ckltens An array of items to be displayed in the picker list.
There are many options, as described in “Specifying the
List of Items for a Popup” (page 6-37) in Newton
Programmer’s Guide.

ckText I t enHei ght

Optional. The height in pixels that should be reserved
for each text item in the picker list. Note that each text
item may actually occupy a height that is less than this
amount. In this case, the item is vertically centered
within the space. The default setting is 13 pixels.

ckLeft Margi n Optional. The margin of blank space, in pixels, between
the list entries and the view boundary on the left side.
The default is 4.

ckRi ght Margi n
Optional. The margin of blank space, in pixels, between
the list entries and the view boundary on the right side.
The default is 5.

ckTopMar gi n Optional. The margin of blank space, in pixels, above
each bitmap item in the list. The default is 2.

ckBot t onmvar gi n
Optional. The margin of blank space, in pixels, below
each bitmap item in the list. The default is 2.

ckAut oCl ose Optional. If the value of this slot is non-ni | (the
default), the picker is automatically hidden after the
user selects an item by tapping it. If this slotis ni | , the

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

picker is not hidden after a selection is made. If you
want to hide the view in this case, you must explicitly
send it the Hi de message. Regardless of the setting of
this slot, the picker is automatically closed if the user
cancels the list by clicking outside it.

pi cklt ensMar kabl e

pi ckMar kW dt h

cal | backCont ext

PickActionScript

Optional. If the value of this slot is non-ni |, space for
marks is reserved at the left side of the list. If this slot is
ni | (the default), no space for marks is reserved. Note
that space is reserved for marks if any of the list items
has a mark specified, regardless of the setting of this slot.

Optional. The number of pixels of space to reserve for
marks at the left side of the list. If you don’t specify this
value and marks are used, the space defaults to 10
pixels. All items are indented this amount.

Optional. The view containing the Pi ckAct i onScri pt
and Pi ckCancel | edScri pt methods. If this slot is
omitted, the picker view looks in itself for these
methods.

picker: Pi ckActi onScri pt (itemPicked)

This method is called when an item is selected from the picker list. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the Pi ckCancel | edScri pt method
is called instead. Note that the Pi ckAct i onScri pt method can be in the
picker view itself or in a different view. If this method is in a different view,
that view should be stored in the cal | backCont ext slot.

itemPicked

General Pickers

For a simple list, an integer that is the index of the
selected item in the pi ckl t ens array is passed as a
parameter to this method. For two-dimensional grids, a
frame with three slots:

i ndex The index of the grid item in the
pi ckl t ens array.

5-17

5-18

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

X The column index (zero-based) of the
selected cell in the grid.

y The row index (zero-based) of the selected
cell in the grid.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the picker is cancelled by a tap outside it and

pi ckAut oQ ose is set to non-ni | . If you don’t supply this method, there is
no default action. Note that the Pi ckCancel | edScri pt method can be in
the picker view itself or in a different view. If this method is in a different
view, that view should be stored in the cal | backCont ext slot.

SetltemMark

picker: Set | t emVar k(index, mark)

You can call this method to set the mark character for an item in the list.

index The integer index of the item whose mark you want to
set.
mark The character you want to set as the mark. Do not

specify a string; you must specify a character (for
example, $>). To set no mark for an item, specify ni |
for the character.

GetltemMark

picker: Get | t emVar k(index)

You can call this method to get the mark character for an item in the list. This
method returns the character, or ni | if the item has no mark character set.

index The index of the item whose mark you want to get.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoGeneralPopup

This proto provides a way to display a pop-up view that has a close box. You
add your own custom children that also appear in the view. The pop-up
view goes away (cancels) if a user taps outside of or taps the close box.

The pr ot 0Gener al Popup must have a vi ewBounds frame that is set to 0
width and 0 height. In addition, the pr ot oGener al Popup can have an

Af firmative method that's called if the pop-up view is closed but not
cancelled. The script takes no arguments.

Figure 5-5 shows an example of pr ot oGener al Popup. Notice that the close
box is included by pr ot oGener al Popup.

Vi ewQui t Scri pt is called by pr ot oGener al Popup and you should not
override it.

Figure 5-5 Example of a pop-up view with a close box

Programmeesr’s Soda

i {ap inside
there

« et bhe

L non
C+Hoola
Up All Night
: Drink; e :
: Generic Punch m|
- I——
arangeaid

Or. Bjorne
DOrink Up

Slot descriptions

vi ewFl ags The default valueis vCl i ckabl e + vFl oating +
vd i ppi ng.

General Pickers 5-19

5-20

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

cancel | ed Don’t modify this slot. A Boolean indicating whether
the user has cancelled the pop-up view; the default
value is non-ni | .

cont ext Don’t modify this slot. The callback context. You do not
need to change this slot; instead leti nher it ed?: New
handle the call back.

Affirmative

popup: Af firmative()

This method is called when the user closes the pop-up view without
cancelling it, that is, using the close box, which accepts the changes.

New

popup: New(bbox, callbackContext)
You call this method to open the pop-up view.

bbox Abounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the initiating pop-up view.

PickCancelledScript

callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by tapping outside it.
Take care when accessing your data.

protoTextList

This proto creates a scrollable list of items from which the user can choose
one or more items by tapping. The selected items are highlighted in the list.
The user scrolls the list by tapping the optional scroll arrows or tapping and
dragging the pen either above or below the list.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

You can specify an array of strings as shown in Figure 5-6.

Figure 5-6 Scrollable list of items

Calendar
Calendar Motes

Directnr‘i

Library
Mames

Alternatively, you can specify an array of shapes that include both shapes
and text as shown in Figure 5-7.

Figure 5-7 Scrollable list of shapes and text

OO o etinriorns adimr

2 Sl alms

O3 Fruitloop ZMudowski's Newwton

[Mewtan

[Mewton Connection 20,2

[Mewton Connection Translator

O Mewton Phone List - /5

1 Mewton Phone List - 9422

[02345675901 2345675901 2349
[Peter ALLEY 1's MNewstan

The following methods are defined internally: Vi ewCl i ckScri pt,

Vi ewSet upChi | drenScri pt, Vi ewScr ol | DownScri pt,

Vi ewScrol | UpScript, DoScrol | Script,H liteLine,DrawH lite,
Set Chi | d, Get Tot al Li nes, Get Vi si bl eLi nes, Get Vi ewHei ght,
Get Vi ewW dt h, Get Li neHei ght, ShowScr ol | ers, Set Vi ewHei ght,

General Pickers 5-21

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Set upLi st, I nvert Li ne,and Butt onCl i ckScri pt . If you need to use
one of these methods, be sure to call the inherited method (for example,
i nherited: ?Vi ewd i ckScri pt ()) to retain full functionality.

The pr ot oText Li st is based on a view of the ¢l Vi ewclass. The

pr ot oText Li st has a single child view (or more if scrollers are on), based
on a view of the cl Text Vi ewclass (or cl Pi ct ur eVi ewif shapes are
shown), that displays the items in the list.

You can add or remove items from the list during run time by adding or
removing items from the | i st | t ens array and then sending the view the
Set upLi st and RedoChi | dr en messages, in that order.

Slot descriptions

vi ewBounds Set to the size and location where you want the list to
appear. The value you set for the bottom bound is
ignored. The bottom bound setting is calculated based
onvi ewLi nes and vi ewFont unless vi ewLi nes is 0.

vi ewFont Optional. The default font is ROM f ont Syst en®.
vi ewFor mat Optional. The default setting is vf Fi | | Whi te +
vf FrameBl ack + vfPen(1).
vi ewLi nes The number of lines to show in the list. This controls the

height of the list view. If you don’t specify vi ewLi nes,
or if you specify 0, the number of lines that will fit in the
bounds rectangle are calculated for you.

sel ection Optional. This slot controls what is highlighted when
the list is first displayed. On input, if you set selection
toni | or- 1, nothing is highlighted. You can set
sel ecti on to the index of anitem in thel i st 1t ens
array to highlight that item. The default setting is zero,
highlighting the first item. On output, and while the
prot oText Li st is displayed, selection contains the
current selection. If the user doesn’t select anything,
sel ecti on is left as whatever the default was.

sel ectedltens Optional. An array of selected items if multiple selection
is enabled. Also contains the selected items when the
user finishes making the selection.

5-22 General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

listltens An array of strings or an array of shapes that are the list
items. Each item in the array corresponds to one line in
the list. If you specify an array of shapes, each shape
must be the same size. For shapes, the size of the
selection highlight is based on the height of the shape.
For text, the size of the selection highlight is based on
the line height of the text. See “Specifying the List of
Items for a Popup” (page 6-37) in Newton Programmer’s
Guide for more information.

I i neHei ght The height of each line in pixels. Set by set upLi st .

i sShapelLi st Optional. Default is ni | . Set to non-ni | if using picts
instead of text.

useMul ti pl eSel ecti ons
Optional. Default is ni | . Set to non-ni | to allow
multiple selections.

useScrol |l ers Optional. Default is ni | . Set to non-ni | to include
scrollers.

scrol | Amounts IfuseScrol | ers isnon-ni |, you can specify an array
of three integers representing lines, pages, and
double-clicks. Defaultis ni | .

The pr ot oText Li st scrolls using the Set Ori gi n method. Therefore, the

slot vi ewOr i gi nY contains the number of pixels the view is scrolled (and

viewOriginY DIV |ineHei ght specifies the line number of the top

displayed line). In addition, the DoScr ol | Scri pt method scrolls the list by

a specified offset.

DoScrollScript
list: DoScr ol | Scri pt (offset)
This method scrolls the list by the specified offset.

offset The offset, in pixels, by which to scroll.

General Pickers 5-23

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

ViewSetupFormScript

list: Vi ewSet upFor ntscri pt ()

In this method, you must do two things: set the value of the | i st | t ers slot
and call the internal method Set upLi st .

ButtonClickScript

list: Butt onC i ckScri pt (index)

This method is called after the pen is placed down and then lifted within the
list. It is not called if the pen is lifted outside the bounds of the list.

index The index of the selected item in the | i st | t ens array.

Note that the selected item is kept in the sel ect i on slot. If

mul ti pl eSel ecti on is enabled, the selected items are stored in the
sel ect edl t ens slot. In that case, you may not need to supply a
Buttond i ckScri pt.

protoTable

This proto is used to create a simple one-column table of text. Each of the
table items can be selected (highlighted) by tapping it. Figure 5-8 shows an
example:

Figure 5-8 One-column table of text

foo
bar
baz
qu
4
5
&

5-24 General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

The following methods are defined internally:

Vi ewSet upChi | drenScri pt, Vi ewScr ol | DownScri pt,

Vi ewScrol | UpScri pt, and Updat eSel ect i on. If you need to use one of
these methods, be sure to call the inherited method also (for example,

i nherited: ?Vi ewSet upChi | drenScri pt ()), otherwise the proto may
not work as expected.

The pr ot oTabl e includes Vi ewScr ol | UpScri pt and

Vi ewScr ol | DownScri pt methods to handle scrolling. However, a view
based on pr ot oTabl e won’t receive these system messages directly. To
support scrolling, your application base view (which typically receives these
messages from the system) should pass them along to the pr ot oTabl e view.

Slot descriptions

vi ewBounds Set to the size and location where you want the table to
appear.
def The table definition frame. Initially, you should set this

to pr ot oTabl eDef , which is the proto frame. Then in
the Vi ewSet upFor nScr i pt method, you can change
individual items. An example of the pr ot oTabl eDef
frame is shown in “protoTableDef” (page 5-27).

scrol | Amount Optional. The table scrolls one row at a time when the

user taps a scroll button. If you want it to scroll more
rows at a time, specify the number of rows here.

vi ewFor mat Optional. The default setting is vf Fi | | White +
vfPen(1) + vfFraneBl ack.

current Sel ection
Contains a string that is the text of the currently selected

cell. If multiple selections are allowed, this string is the
text of the last cell selected.

sel ectedCel | s An array of indexes of selected cells. These are indexes
into the def . t abVal ues array.

decl ar eSel f Do not change. This slot is set by default to * base. This
symbol identifies the view for scrolling and other
internal purposes.

General Pickers 5-25

5-26

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

ViewSetupFormScript

table: Vi ewSet upFor ntScri pt ()

Use this method to clone the table definition frame, def, if you want to
change any of the values in the frame at run time.

For example:

Vi ewSet upFor nScri pt: func()

begi n
def := Clone (def);
def .tabValues := ["fo0", "bar", "baz", "qux", "4",

"“5", "eé", "7", "8", "9"];
/1 tabWdths nust be =< the view w dth-2
def.tabWdths := self; Local Box() .right -2;
def.tabDown : = 10;
end,

SelectThisCell

table: Sel ect Thi sCel | (cell)

This method is defined internally and is called when the user taps a cell in
the table. If you want to be notified whenever the user taps a cell, you can
override this method. However, you must call the inherited method before
doing anything else in your own method. For example:

sel ect ThisCel | : func(vi ewTapped)

cell

begi n

/1l first you MUST call the inherited method
i nherited: sel ect ThisCell (vi ewTapped);

/1 here you can do your own things

end,

The child view representing the cell that was tapped.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoTableDef

This proto defines the format of the table. You use it by setting the
pr ot oTabl e slot def to pr ot oTabl eDef . You change individual items in
the Vi ewSet upFor nScr i pt method. See pr ot oTabl e for details.

Here is an example of protoTableDef:

prot oTabl eDef := {

t abAcross: 1,

t abDown: O,

tabW dt hs: 50,

tabHei ghts: 0,

tabProt os: protoTabl eEntry,

tabVval ues: nil,

tabVal ueSl ot: 'text,

tabSet up: func(chil dVi ew, hlndex, vlndex)

begin

childView hlndex := hlndex - 1;// Save for selection
chil dVi ew. vindex := vlndex - 1;

end,

tabUni queSel ection: true, //use false for nult. selection
i ndent X: 2,

}

Slot descriptions

t abAcross The number of columns in the table. This must be set to
one (1). Multicolumn tables are not supported by
prot oTabl e.

t abDown The number of rows in the table.

t abW dt hs An integer giving the width of the single table column,
in pixels.

t abHei ght s An integer giving the height of a row, in pixels (constant

for all rows).

General Pickers 5-27

5-28

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

t abPr ot os Each row in the table is child view of the table. This slot
holds either a reference to a template used to create the
child views, or an array of references to templates. For
the slots for the default, see “protoTableEntry”

(page 5-29).

t abVal ues A value used as the value of each child view.

Alternately, an array of values mapped to table cells.

t abVal ueSl ot A symbol naming the slot in each child view where that
child’s view value (specified in t abVal ues) is stored.
(Remember to quote the symbol, as in, ' t ext .) For
example, if the table consists of child views based on the
cl Par agr aphVi ewclass (the default), you would
specify ' t ext for this slot, since the value of a
cl Par agr aphVi ewis stored in its t ext slot.

t abUni queSel ecti on
A Boolean value. Set to non-ni | to select only a single
cell. Set to ni | to select multiple cells.

i ndent X Reserved for internal use. Do not change.

IMPORTANT

If you allow multiple cell selection, your program will fail
unless you ensure that the sel ect edCel | s slotis in RAM,
since the proto attempts to add to this array. To make sure
the slot is in RAM, use the following code in the

Vi ewSet upFor nScri pt method:

sel f.sel ectedCel | s: =Cl one(sel ectedCel I s); a

TabSetup

table: TabSet up(view, column, row)

This method is called before each of the child views is instantiated. It allows
you to do special initialization operations to each child view before it is
instantiated. If you choose to override this method, call the inherited method
also: i nherited: ?TabSet up(chil dVi ew, hlndex, vlndex).

view A reference to the child view.

column The column number of the child within the table.

General Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

row The row number of the child within the table.

protoTableEntry

This proto controls how the text in each row of the table appears; for
example text justification and type of text selection. You use it by setting the
t abPr ot os slot to pr ot oTabl eEnt ry in pr ot oTabl eDef . You change
individual items in the Vi ewSet upFor nScr i pt method. See pr ot oTabl e
and pr ot oTabl eDef for details.

Here is a list of the important slots in pr ot oTabl eEnt ry:

Slot descriptions

vi ewCl ass cl Text Vi ewis a read-only cl Par agr aphVi ew; it
supports no tabs or multistyled text.
vi ewFl ags vVisible + vdickable + vReadOnl y

vi ewJustify vjLeftH + vj CenterV + oneLi neOnly

vi ewTr ansf er Mode
nmodeOr

t ext Holds the text shown in this view.

ViewClickScript
entry: Vi ewCl i ckScri pt ()

This method sets cur r ent Sel ect i on in the parent view (the table) to the
value of the t ext slot. It also sends the Sel ect Thi sCel | message.

ViewHiliteScript

entry: ViewHi | i teScri pt ()
This method highlights itself.

General Pickers 5-29

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Map Pickers

These protos display various maps, let the user select a place, and return
information about the location selected.

protoCountryPicker

This proto displays a picker from which a user can select a country, as shown
in Figure 5-9.

Figure 5-9 Example of a country picker

5-30

You specify a vi ewBounds; the proto scales the picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby countries
pops up. If the user selects a country, the Pi ckWor | d message is sent to your
country picker view with one parameter, a frame containing information
about the country picked.

Slot descriptions

aut oCl ose Optional. Set to non-ni | to force the
pr ot oCount r yPi cker view to close when the user

Map Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

chooses an item from a picker on the map. Set toni | to
disable this autoclosing behavior. The default is ni | .

listLimt Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

PickWorld

picker: Pi ckWor | d(info)

This message is sent when the user picks a country.

info A frame describing the country picked. The following
example shows the information returned (from the
Inspector output):

{nane: "C@uat enal a", outgoing: s00, countryCode: 502,
latitude: 23363826, |ongitude: 401907529, continent:
‘central Anerica, currency: "Quetzal" },

protoProvincePicker

This proto is used to display a picker from which a user can select a
Canadian province, as shown in Figure 5-10.

Figure 5-10 Example of a province picker

Map Pickers 5-31

5-32

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

You specify a vi ewBounds, and the proto scales the picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby provinces
pops up; if the user selects one, the Pi ckWor | d message is sent to your
province picker view with one parameter, a frame containing information
about the province picked.

Slot descriptions

vi ewFl ags Optional. Should you override this slot, you must set
vd i ppi ng because this proto draws outside of its
bounds.

aut oCl ose Optional. Set to non-ni | to force the

pr ot oPr ovi ncePi cker view to close when the user
chooses an item from a picker on the map. Set to ni | to
disable this autoclosing behavior. The defaultis ni I .

listLimt Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

PickWorld

picker: Pi ckWor | d(info)
This message is sent when the user picks a province.

info A frame describing the province picked. The following
is an example of the information returned (from the
Inspector output):

{name: "Nova Scotia", latitude: 67357415,
| ongi t ude: 442918502},

protoStatePicker

This proto is used to display a picker from which a user can select a U.S.
state, as shown in Figure 5-11.

Map Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-11 Example of a state picker

-y,

You specify a vi ewBounds, and the proto scales the picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby states
pops up; if the user selects one, the Pi ckWor | d message is sent to your state
picker view with one parameter, a frame containing information about the
state picked.

Slot descriptions

vi ewFl ags Optional. Should you override this slot, you must set
vd i ppi ng because this proto draws outside its
bounds.

aut oCl ose Optional. Set to non-ni | to force the

pr ot oSt at ePi cker view to close when the user
chooses an item from a picker on the map. Set toni | to
disable this autoclosing behavior. The default is ni | .

listLimt Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

Map Pickers 5-33

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickWorld

picker: Pi ckWbr | d(info)
This message is sent when the user picks a state.

info A frame describing the state picked. Here’s an example
of the information returned (from the Inspector output):

{nane: "Florida", latitude: 42502280,
| ongi tude: 414583648},

protoWorldPicker

This proto is used to display a picker from which a user can select a
continent, as shown in Figure 5-12.

Figure 5-12 Example of a world picker

5-34

You specify a vi ewBounds frame, and the proto scales the world map
picture to fit within it.

The picker behavior is automatic. On a tap, a picker listing nearby continents
pops up. If the user selects one, the Pi ckWor | d message is sent to your
world picker view with one parameter, a frame containing information about
the continent picked.

Map Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Slot descriptions

aut oCl ose Optional. Set to non-ni | to force the
pr ot oWor | dPi cker view to close when the user
chooses an item from a picker on the map. Set toni | to
disable this autoclosing behavior. The default is ni | .

listLimt Optional. Set to the maximum number of items to be
listed in one of the pickers that pops up when a user
taps the map. The default value is 12.

PickWorld
picker: Pi ckWor | d(info)

This message is sent when the user picks a continent.

info A frame describing the continent picked. Here’s an
example of the information returned (from the
Inspector output):

{ name: "Europe", topLatitude: 104391566,
| ef t Longi t ude: 499588209, bottonlatitude: 49213166,
ri ghtLongi tude: 59652323},

Text Pickers

These protos allow the user to specify various kinds of information by
picking text representations.

protoTextPicker

This proto displays a label picker with a text representation of an item. When
the user taps the picker, the Popl t method, which allows a customized
picker to be displayed, is executed. If the user picks an item, the

Pi ckActi onScri pt is called. If you provide a customized picker, you must
call Pi ckAct i onScri pt with a correcti t enSel ect ed number.

Text Pickers 5-35

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-13 shows an example of a slip that contains a pr ot oText Pi cker
with its label preceded by kPopChar .

Figure 5-13 Example of a text picker

5-36

prutuTEPicker Test

easier

Slot descriptions

| abel The constant kPopChar &is a string to be displayed as
the picker label.

i ndent You can specify an indent; otherwise, it’s calculated for
you.

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

ent r yFont Optional. The font for the text picker line; the default

setting is edi t Font 10.

Poplt

picker: Popl t (x)
This method is called when the user taps the picker.
X A value equal to (i ndent - 2).

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickActionScript

picker: Pi ckActi onScri pt (item)

This method is called after the user picks an item from the view displayed in
Popl t.

item The item passed by Popl t .

PickCancelledScript
picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

TextSetup

picker: Text Set up()

This method returns a text string to be displayed in the entry part of the
picker display.

protoDateTextPicker

This proto displays a label picker with a text representation of a date; for
example “June 22, 1995”. When the user taps the picker, the

pr ot oDat ePopup is displayed, allowing the user to specify a different date.
When the user taps the close box of the pop-up view, the text next to the label
is updated with the new date. Figure 5-14 shows an example.

Text Pickers 5-37

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-14 Example of a date text pop-up view

5-38

& Septerrber 1995 B

= m t w t f =

24567 809
10111213 14 15 16
1718 19 20 21 22 Z3
4 E& 26 27 28 29 20

1995

1 2

&)

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oDat eText Pi cker uses the pr ot oText Pi cker as its proto;
pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Slot descriptions
| abel
| abel Font

ent r yFont

dat e

| ongFor nat

Text Pickers

A string to be displayed as the picker label.

Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

Optional. The font for the text picker line; the default
setting is edi t Font 10.

An initial date to display (as returned by the Ti e
function). If you don't specify a date, the current date
appears by default. This slot is also updated with the
new date when the user closes the pop-up view.

A symbol specifying the format in which to display the
date; the defaultis' year Mont hDay St r Spec. See
Chapter 17, “Localizing Newton Applications

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Reference,” Table 17-1 (page 17-4), for a complete list of
symbols for | ongFor mat .

short For mat A symbol specifying the format in which to display the
date. Use shor t For mat only if you have a ni | value
for | ongFor mat . See Chapter 17, “Localizing Newton
Applications Reference,” Table 17-2 (page 17-6), for a
complete list of symbols for shor t For mat .

Notes

Both | ongFor mat and short For mat must be present if
you plan to use shor t For mat . If you use shor t For mat,
| ongFor mat must be setto ni | .

If you implement Pi ckAct i onScri pt, the parameter
newDat e is an array containing a single element of integer;
it’s the selected date in terms of minutes passed since
midnight, 1/1/1904.

The slot dat e always contains the selected date (in terms of
minutes passed since midnight, 1/1/1904 12:00). O

PickActionScript

picker: Pi ckAct i onScri pt (newDate)

This method is called when the user taps the close box of the pop-up view. If
you don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the Pi ckCancel | edScri pt method
is called instead.

newDate The new date selected by the user.

PickCancelledScript
picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

Text Pickers 5-39

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoDateDurationTextPicker

This proto displays a label picker with a text representation of a date range;
for instance “January 5, 1974 — February 7, 1975”. When the user taps the
picker, the pr ot oDat el nt er val Popup is displayed, allowing the user to
specify a different range. When the user taps the close box of the pop-up
view, the text next to the label is updated with the new date range.

Figure 5-15 shows an example of a pr ot oDat eDur at i onText Pi cker with
slot short Format = ' nunmeri cDat eSt r Spec. Notice the label is
proceeded by kPopChar.

5-40 Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-15

Span: 1/1/04 - ongoing

Example of date picker before and after it is tapped

5tart date
@ January 1904 o
= m t w t f s
z
2 4 5 6 7 8 9
1011 1213 14 15 16
17 18 19 20 21 22 23
24 ¥5 26 27 28 29 30
a1
5top date

4 January 1904 o

s m t w t f

3

The Popl t and Text Set up methods are defined internally; you shouldn’t

need to override them.

The pr ot oDat eDur at i onText Pi cker uses the pr ot oText Pi cker asits
proto; pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Text Pickers

5-41

5-42

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Slot descriptions

| abel A string to be displayed as the picker label.

| abel Font Optional. Font used to display the label; the default is
ROM f ont syst enllObol d.

ent r yFont Optional. Font used to display the picked entry; the
defaultis 10243 (= editFont10 ?).

i ndent Optional. If not supplied,

pr ot oDat eDur ati onText Pi cker calculates the
indent based on the length of label.

start Ti me An initial start date to display (as returned by the Ti me
function).

stopTi me An initial end date to display (as returned by the Ti ne
function).

| ongFor nat A symbol specifying the format in which to display the
time; the defaultis' year Mont hDay St r Spec.

shor t For mat A symbol specifying the format in which to display the

time; the defaultis ni | .

Note

Both | ongFor mat and short For mat must be present if
you plan to use shor t For mat . If you use shor t For mat,
| ongFor mat must be set to ni | .

You can provide a value for either al ongFor mat slot or a
short For mat slot, but not both, to specify the format in
which to display the date range. O

PickActionScript

picker: Pi ckActi onScri pt (startTime, stopTime)

This method is called when the user taps the pop-up’s close box. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the Pi ckCancel | edScri pt method
is called instead.

startTime The new starting time selected by the user.

stopTime The new ending time selected by the user.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickCancelledScript
picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

protoRepeatDateDurationTextPicker

This proto displays a label picker with a text representation of a date range;
for example, “January 5, 1974 - February 7, 1975”. When the user taps the
picker, the pr ot oDat el nt er val Popup is displayed, allowing the user to
specify a different range. When the user taps the close box, the text next to
the label is updated with the new date range. This looks essentially the same
as Figure 5-15 (page 5-41). Figure 5-16 shows how the popup for this picker
looks.

Text Pickers 5-43

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-16 Example label picker with text representation

5tart date
4 Movermber 1995 s

s m t w t f =

z 3 4

5 6 ¥ 8 91011

12 13 14 15 16 17 18

1920 21 22 23 24 25
g0 27 £8 29 20
5top date

Decamber 1995

s m t w t f

* 2 months

)

5tart date
4 Movernber 1995 s

s m t w t f =

B:: -

S 6 7§ 8 91011
1213141516 17 18
19 20 21 22 23 24 25
26 27 28 29 30

5top date

@ Decermber 1995

5 m Tt w t f s
Z
32 4 5 6 7 8 9
011 12 12 months
2 19 4 3 months
5 26 4 4 months
A 6 months
1 year
2 years
Gnguin

Unlike pr ot oDat eDur at i onText Pi cker,
pr ot oRepeat Dat eDur ati onText Pi cker’s
pr ot oDat el nt er val Popup’s duration picker shows choices that are

appropriate for the r epeat Type slot, and the duration displayed when the
user taps a duration or stop date is given in units of the r epeat Type. For

example, if the r epeat Type slot specifies monthly, the duration picker

shows the choices for two months, three months, and so on, and the duration

value string is in units of months. In contrast, a

5-44 Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

pr ot oDat eDur at i onText Pi cker would always show choices for one
week, two weeks, and so on and would display the duration value in units of
weeks and days.

The Vi ewSet upFor nScri pt, Popl t, Text Set up, and Get Dur at i on
methods are defined internally; you shouldn’t need to override them. If you
do override them, make sure to call the inherited method.

The pr ot oRepeat Dat eDur ati onText Pi cker uses

pr ot oDat eDur at i onText Pi cker as its proto;

pr ot oDat eDur at i onText Pi cker is based on pr ot oText Pi cker, which
in turn is based on a view of the cl Vi ewclass.

Slot descriptions

| abel A string to be displayed as the picker label.

| abel Font Optional. The font for the label; the default setting is
tsSi ze(10) + tsBold.

ent ryFont Optional. The font for the text picker line; the default
setting is edi t Font 10.

startTi me An initial start date to display (as returned by the Ti me
function).

st opTi ne An initial ending date to display (as returned by the

Ti me function).

You can provide a value for either a | ongFor mat slotora short For mat
slot, but not both, to specify the format in which to display the date range.

| ongFor mat A symbol specifying the format in which to display the
time; the defaultis ni | .

short For mat A symbol specifying the format in which to display the
time; the defaultis' nuneri cDat eSt r Spec.

repeat Type The r epeat Type slot contains one of the following

constants that describe how often the meeting repeats:
kDayof Week, kWeekl nMont h (1), kDat el nMont h
(2),kDat el nYear (3), kPeri od(4), kNever (5),
kWeekl nYear (7).

nt gl nf o Used for repeating meetings and events. An immediate
value containing packed repeating meeting information.

Text Pickers 5-45

5-46

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

This slot is interpreted differently, depending on the
value of the r epeat Type slot. For a complete list of
values, see the description of the nt gl nf o slot in
Chapter 16, “Built-in Applications and System Data
Reference,” “Meeting Frames” (page 16-57).

PickActionScript

picker: Pi ckActi onScri pt (startTime, stopTime)

This method is called when the user taps the close box of the pop-up view. If
you don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the Pi ckCancel | edScri pt method
is called instead.

startTime The new starting time selected by the user.

stopTime The new ending time selected by the user.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

protoDateNTimeTextPicker

This proto displays a label picker with a text representation of a date and
time; for example, “6/22/95 2:11 pm”. When the user taps the picker, the
pr ot oDat eNTi nePopup is displayed, allowing the user to specify a
different date and time. When the user taps the pop-up’s close box, the text
next to the label is updated with the new date and time.

Figure 5-17 shows an example of a date and time label picker before and
after it is tapped.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-17 Example of a date and time pop-up view

Before tapy —— Label 9527795 2:15 pm

After tap _m# Septarmber 1995 #

m ot ow t
'IE

345678 9
101112 13 14 15 16
17 18 19 20 21 22 23
74 75 76 g 28 29 30

3

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oDat eNTi neText Pi cker uses the pr ot oText Pi cker asits
proto; pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Slot descriptions

| abel Optional. A string to be displayed as the picker label.

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBol d.

ent ryFont Optional. The font for the text picker line; the default

setting is edi t Font 10.

date Optional. An initial date/time to display (as returned by
the Ti me function). If you don’t specify a date, the
current date and time are used by default.

f or mat Optional. A symbol specifying the format in which to
display the time; for example, “2:15 pm”. The default

Text Pickers 5-47

5-48

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

value is' short Ti meStr Spec. See Chapter 17,
“Localizing Newton Applications Reference,” “Date and
Time Format Specifications” (page 17-11) for
information on specifying formats.

| ongFor mat Optional. A symbol specifying the format in which to
display the date; for example, “September 27, 1995”.
The defaultisni | .

shor t For mat Optional. A symbol specifying the format in which to
display the date; for example, “9/27/95”. The default is
"nuneri cDat eSt r Spec.

i ncrenent Optional. An integer representing the increment by
which to change the time when the user taps the time
picker portion of the pop-up view; a value of 15, for
example, causes the time to change in 15 minute
increments.

Note

You can provide a value for either al ongFor mat slot or a
short For mat slot, but not both, to specify the format in
which to display the date and time. Because the default
value of | ongFor mat is ni |, you can use shor t For mat
without providing a | ongFor mat slot. O

PickActionScript

picker: Pi ckAct i onScri pt (newDate)

This method is called when the user taps the pop-up’s close box. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the Pi ckCancel | edScri pt method
is called instead.

startTime The new date and time selected by the user.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickCancelledScript
picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled if the user taps outside
it; if you don’t supply this method, there is no default action.

protoTimeTextPicker

This proto displays a label picker with a text representation of a time; for
example, “2:56 pm”. When the user taps the picker, the pr ot oTi mePopup is
displayed, allowing the user to specify a different time. When the user taps
the pop-up’s close box, the text next to the label is updated with the new
time.

Figure 5-18 shows an example of a pr ot oTi meText Pi cker before and after
it has been tapped.

Figure 5-18 Example of a label picker with a text representation of a time

Before [ap ——# Time 1:40 pr

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oTi meText Pi cker uses the pr ot oText Pi cker as its proto;
pr ot oText Pi cker is based on a view of the ¢l Vi ewclass.

Slot descriptions
| abel A string to be displayed as the picker label.

Text Pickers 5-49

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

ent r yFont Optional. The font for the text picker line; the default
setting is edi t Font 10.

i ndent Optional. If not supplied,

pr ot oDat eDur at i onText Pi cker calculates the
indent based on the length of label.

time The initial time (in number of minutes since midnight,
1/1/1904). This value is updated by the picker as the
user picks a new value.

f or mat Optional. A symbol specifying the format in which to
display the time; the defaultis' short Ti neSt r Spec.
See Chapter 17, “Localizing Newton Applications
Reference,” “Date and Time Format Specifications”
(page 17-11) for information on specifying formats.

i ncrenent Optional. An integer representing the increment by
which to change the time when the user taps the pop-up
view; the default value is 12, meaning that the time
changes twelve minutes for each tap.

PickActionScript

picker: Pi ckActi onScri pt (newTime)

This method is called when the user taps the pop-up’s close box. If you don't
supply this method, there is no default action. If no item is selected because
the user taps outside the pop-up view, the Pi ckCancel | edScri pt method
is called instead.

newTime The new time selected by the user.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

5-50 Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoDurationTextPicker

This proto displays a label picker with a text representation of a time range;
for example, “2:33 pm — 5:54 am”. When the user taps the picker, the

prot oTi mel nt er val Popup is displayed, allowing the user to specify a
different range. When the user taps the pop-up’s close box, the text next to
the label is updated with the new time range.

Figure 5-19 shows an example pr ot oDur at i onText Pi cker before and
after the user taps the picker.

Figure 5-19 Example label picker with a text representation of a time range

Before D —— Hour Span: 5142 pm - 6:42 pm

after tap— (TN starttime

3
N
27

»
F3
N
27

#* 1 hour

&

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oDur at i onText Pi cker uses the pr ot oText Pi cker as its proto;
pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Slot descriptions
| abel A string to be displayed as the picker label.

Text Pickers 5-51

5-52

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

ent r yFont Optional. The font for the text picker line; the default
setting is edi t Font 10.

startTinme An initial start time to display (as returned by the Ti ne
function).

st opTi me An initial ending time to display (as returned by the

Ti me function).

f or mat A symbol specifying the format in which to display the
time; the defaultis' short Ti neSt r Spec. See
Chapter 17, “Localizing Newton Applications
Reference,” “Date and Time Format Specifications”
(page 17-11) for information on specifying formats.

i ncrement An integer representing the increment by which to
change the time when the user taps the pop-up view;
the default value is 1, meaning that the time changes
one minute for each tap.

PickActionScript

picker: Pi ckActi onScri pt (startTime, stopTime)

This method is called when the user taps the pop-up’s close box. If you don't
supply this method, there is no default action. If no item is selected because
the user taps outside the pop-up view, the Pi ckCancel | edScri pt method
is called instead.

startTime The start time selected by the user.

stopTime The end time selected by the user.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled if a user taps outside it;
if you don’t supply this method, there is no default action.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoTimeDeltaTextPicker

This proto displays a label picker with a text representation of a time delta.
When the user taps the picker, the pr ot oTi neDel t aPopup is displayed,
allowing the user to specify a new time delta. When the user taps the
pop-up’s close box, the text next to the label is updated with the new time
delta.

Figure 5-20 shows an example of a pr ot oTi meDel t aText Pi cker before
and after it is tapped.

Figure 5-20 Example of a label picker with a text representation of a time delta

Before bapy ——# Time 1:40 pm

After tap —m Iﬁ

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oTi neDel t aText Pi cker uses the pr ot oText Pi cker as its
proto; pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Slot descriptions

| abel The constant kPopChar & i s a string to be displayed
as the picker label.

time An initial time (in number of minutes), which is then
updated by the picker as a new value has been picked.

| abel Font Optional. The font for the label; the default setting is
tsSi ze(10) + tsBold.

ent ryFont Optional. The font for the text picker line; the default

setting is edi t Font 10.

Text Pickers 5-53

5-54

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

i ndent Optional. If not supplied,
pr ot oDat eDur at i onText Pi cker calculates the
indent based on the length of label.

m nVal ue Optional. An integer specifying a minimum delta value.

PickActionScript

picker: Pi ckAct i onScri pt (newDuration)

This method is called when the user taps the pop-up’s close box. If you don't
supply this method, there is no default action. If no item is selected because
the user taps outside the list, the Pi ckCancel | edScri pt method is called
instead.

newDuration The number of minutes the user picked.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up is cancelled by a tap outside it; if you
don’t supply this method, there is no default action.

protoMapTextPicker

This proto displays a label picker with a text representation of a country; for
example, “Afghanistan”. When the user taps the picker, a popup displays
that allows the user to select a new country from an alphabetical list. When
the user taps the pop-ups close box, the text next to the label is updated with
the new country name.

Figure 5-21 shows an example of a pr ot oMapText Pi cker before and after
it is tapped.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-21 Example of a map text label picker

m.&fqhuﬁmn
ARanla

EH

Ahpeic T
Fungnla -ﬂ.
AraEHTIna iLa
Arrendn il
Aasmrallia (rar]
Saedric =
B e —_—
BahamiAz dl)
Oalu-ain pr
Barleaulus

H=laius

Bealglurm

O=lize l.il

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oMapText Pi cker uses the pr ot oText Pi cker as its proto;
pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Slot descriptions

| abel A string to be displayed as the picker label.

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

ent r yFont Optional. The font for the text picker line; the default
setting is edi t Font 10.

i ndent Optional. If not supplied, the proto calculates it based
on the length of label.

PickActionScript

picker: Pi ckActi onScri pt (newName)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because

Text Pickers 5-55

5-56

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

the user taps outside the list, the Pi ckCancel | edScri pt method is called
instead.

newName The new country name selected by the user.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by a tap outside it; if
you don’t supply this method, there is no default action.

protoCountryTextPicker

The pr ot oCount r yText Pi cker is the same as pr ot oMapText Pi cker
(which it uses as its proto).

protoUSstatesTextPicker

This proto displays a label picker with a text representation of a U.S. state; for
example, “Ohio”. When the user taps the picker, a popup displays that allows
the user to select a new state from an alphabetical list. When the user taps the
pop-up’s close box, the text next to the label is updated with the new state
name.

Figure 5-22 shows an example of pr ot oUSst at esText Pi cker before and
after it has been tapped.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-22 Example of a label picker with a text representation of a U.S. state

e 4ot i 20

Mlaska dul
ArlzZona .
ATk asas ahi
Calllormla
Colokada
ConmeciicuT
Dalaware
Flor ki3
iE=urLia
Haw 4ii
IdAlme

iz
InJiaria]

Iuwia EI
Flarizcs

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot 0USst at esText Pi cker uses the pr ot oMapText Pi cker as its
proto.

Slot descriptions

| abel A string to be displayed as the picker label.

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

ent r yFont Optional. The font for the text picker line; the default
setting is edi t Font 10.

i ndent Optional. If not supplied,

pr ot oDat eDur at i onText Pi cker calculates the
indent based on the length of label.
par ans A frame with the following slot:
resul t The default value is ' name. You can
change it to ' abbr ev in your
Vi ewSet upFor nScri pt if you want to
get an abbreviated form of the name. For

Text Pickers 5-57

5-58

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

example, give your
pr ot oUSSt at esText Pi cker the
following Vi ewSet upFor nScri pt :

func()
begi n
sel f.parans := Cl one(parans) ;
parans.result := '"abbrev ;
i nherited: ?vi ewSet upFor nScri pt () ;
end

That will make the result an abbreviation
and will change the picker label to an
abbreviation as well.

PickActionScript

picker: Pi ckAct i onScri pt (newName)

This method is called when the user taps the pop-up’s close box. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the list, the Pi ckCancel | edScri pt method
is called instead.

newName The new state name selected by the user.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up is cancelled by a tap outside it; if you
don’t supply this method, there is no default action.

protoCitiesTextPicker

This proto displays a label picker with a text representation of a city; for
example, “Albany”. When the user taps the picker, a popup displays that
allows the user to select a new city from an alphabetical list. When the user
taps the pop-up’s close box, the text next to the label is updated with the new
city name.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-23 shows an example of a pr ot oCi t i esText Pi cker before and
after a tap is made.

Figure 5-23 Example of a city picker

euss [

Albany NY def
Albuquerque NM | ghi
Altoona PA jkd
Amarillo TX

Anchorage AK oo
AreaSl NV pqr
Arlington YA stu
Athens GA T
Atlanta GA

Austin TX 2
Bakersfield CA e
Baltimore MD H
Beaumont TX hd
Bethesda WD [E]

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oCi t i esText Pi cker uses the pr ot oMapText Pi cker asits
proto.

Slot descriptions

| abel A string to be displayed as the picker label.

| abel Font Optional. The font for the label; the default setting is
tsSi ze(10) + tsBold.

ent ryFont Optional. The font for the text picker line; the default

setting is edi t Font 10.

Text Pickers 5-59

5-60

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

i ndent Optional. If not supplied, pr ot oGi t i esText Pi cker
calculates it based on the length of label.

par ams A frame with slots that are used internally.

In order to choose a default city specify a default slot in
the par ans frame of the form:
def aul t Optional. Specifies a default city with a
value of the form:
[country-symbol, city-name]
For example:

[' Canada, "Cal gary"]
You can find the appropriate symbol and
name by using Get Ci t yEnt ry to find
the entry for the appropriate city, then
using the count r y slot for the country
symbol and the nane slot for the city
name. For example:

local ¢ := GetCityEntry("Calgary")[O0] ;
parans. default := [c.countr, c.nane] ;

PickActionScript

picker: Pi ckActi onScri pt (newName)

This method is called when the user taps the pop-up’s close box. If you don’t
supply this method, there is no default action. If no item is selected because
the user taps outside the list, the Pi ckCancel | edScri pt method is called
instead.

newName The new city name selected by the user.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up is cancelled when the user taps outside it;
if you don’t supply this method, there is no default action.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoLongLatTextPicker

This proto displays a label picker with a text representation of longitude and
latitude values. When the user taps the picker, the | ongLat Pi cker is
displayed, allowing the user to select new values for longitude and latitude.
When the user taps the pop-up’s close box, the text next to the label is
updated with the new values.

Figure 5-24 shows an example of pr ot oLongLat Text Pi cker before and
after it has been tapped.

Figure 5-24 Example of a text representation of longitude and latitude values

Before fap —#Where 78 49N 118 40E

Mtertap—ﬂ \Zﬁ‘ M N
11181410 El

The Popl t and Text Set up methods are defined internally; you shouldn’t
need to override them.

The pr ot oLongLat Text Pi cker uses the pr ot oText Pi cker as its proto;
pr ot oText Pi cker is based on a view of the cl Vi ewclass.

Slot descriptions

| abel The constant kPopChar followed by a string to be
displayed as the picker label; “Where” is the default.
| atitude An integer specifying the latitude to display initially.

See Chapter 19, “Built-in Applications and
System Data,”“Using Longitude and Latitude Values”

Text Pickers 5-61

5-62

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

(page 19-30) in Newton Programmer’s Guide for
information calculating this value.

| ongi t ude An integer specifying the longitude to display initially.

| abel Font Optional. The font for the label; the default setting is
tsSize(10) + tsBold.

ent r yFont Optional. The font for the text picker line; the default
setting is edi t Font 10.

i ndent Optional. The distance, in pixels, to indent the picker

from the beginning of the line (the beginning of the text
label). If you don’t include this slot, the picker is placed
6 pixels to the right of the text label by default.

wor | dCl ock A Boolean, must be non-ni | .

PickActionScript

picker: Pi ckActi onScri pt (long, lat)

This method is called when an item is selected from the pop-up view. If you
don’t supply this method, there is no default action. If no item is selected
because the user taps outside the pop-up view, the Pi ckCancel | edScri pt
method is called instead.

long The new longitude selected by the user.
lat The new latitude selected by the user.

When the user picks new longitude or latitude value, the slots | ongi t ude
and | at i t ude are automatically updated.

PickCancelledScript

picker: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

Text Pickers

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Date, Time, and Location Pop-up Views

These protos let the user specify dates, times, and locations using graphical
pop-up views.

protoDatePopup

This proto lets the user choose a single date. To provide selection of multiple
dates, use the pr ot oMul t i Dat ePopup proto. The user confirms the selected
date by tapping the close box; tapping outside the pop-up view cancels the
pop-up view.

Figure 5-25 shows the result of a single-date selection.

Figure 5-25 Example of a single date selection

| June 1993 B
= m t w t f =

12 3§ s
6B ¥ 8 9101112
1314151617 18 19
L0871 22 2384 25 2o
27 28 £9 30

Date, Time, and Location Pop-up Views 5-63

5-64

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

New

popup: New(initialDate, bbox, callbackContext)
This method is called to open the pop-up view.

initialDate An array containing one element, an integer
representing the initial date to display as selected (as
returned by the Ti ne function).

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view

PickActionScript

callbackContext: Pi ckActi onScri pt (selectedDate)
This method is called when the user taps the close box.

selectedDate An array containing a single date.

PickCancelledScript

callbackContext: Pi ckCancel | edScri pt ()
This method is called if the pop-up view is cancelled by tapping outside it.

protoDatePicker

This proto facilitates the selection of a date. Use this proto when the desired
date is likely to be relatively close to the current date, because it’s not easy to
change the year quickly. Figure 5-26 shows a date picker.

Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-26 Example of a date picker

€ January 1906 W

= m t w t f =

Y8 91011 1213
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

Tapping either arrow scrolls to the prior/next month; tapping a day selects

the day; tapping the spaces before the first or after the last day of a month

selects the appropriate day in the prior/next month; and tapping the month/

year banner at the top displays a pop-up menu to change the month. The

pop-up menu appears in Figure 5-27.

Date, Time, and Location Pop-up Views

5-65

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-27 Example of a pop-up menu

August 1905
S5eptember
October
Movember
December 1905

4|0 January 1906 [

s February
Mlarch
April o
1 May 3
June
1 July 1906 x
2T 22 23 £ 20 20 &1
28 79 30 AN

The following slots and methods are used internally:
Mont hChangedScri pt, Set Titl e, Vi ewSet upDoneScr i pt

These are listed so that you don’t inadvertently override them.

Slot description

sel ectedDat es An array containing one element, an integer
representing the selected date (as returned by the Ti e
function). You can supply an initial date to display here
as well; if you don't, the current date is used.
To change the selected date programmatically, supply
the new date in this slot and call the Ref r esh method.

5-66 Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

DateChanged

picker: Dat eChanged(array)

This method is called when a date is selected, to give you a chance to take
some action. The return value is ignored.

array An array containing a single element, the selected date.

Refresh

picker: Ref resh()

To change the selected date programmatically, supply a new date in the
sel ect edDat es slot and call this method to update the view.

protoDateNTimePopup

This proto lets the user choose a single date and time. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

Figure 5-28 shows the result of a date and time selection.

Date, Time, and Location Pop-up Views 5-67

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-28 Example of a single date and time selection

5-68

1 2

27 28 29 30

L June 1993 »

5 mm t w t f s

65 ¥ 8 9101112
12141516 17 15 19
20 21 22 23 24 25 26

10731315

IR S

&

New

popup: New(dateNTime, increment, bbox, callbackContext)

This method is called to open the pop-up view.

dateNTime

increment

bbox

callbackContext

An array containing one element, an integer,
representing the initial date and time to display as
selected (as returned by the Ti me function).

An increment value that determines the granularity for
the pop-up view. The value “1” specifies one minute; try
111511, 113071, and //60/1'

A bounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

NewTime
callbackContext: NewTi nme(dateNTime)

This method is called whenever the time is changed.

dateNTime The new date and time.

PickActionScript
callbackContext: Pi ckAct i onScri pt (dateNTime)

This method is called when the user taps the close box.

dateNTime The selected date and time.

PickCancelledScript
callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

protoDatelntervalPopup

This proto lets the user specify an interval of dates by selecting a start and
stop date. The user confirms the selection by tapping the close box; tapping
outside the pop-up view cancels it.

Figure 5-29 shows the result of selecting a start and stop date.

Date, Time, and Location Pop-up Views 5-69

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-29 Example of a date interval pop-up view

S5tart date
L June 1993 »

s m t w t f =
1 2 3Rl 5
6 7 8 91011 12
132141516 17 18 19
20 21 22 23 24 25 26
27 28 29 30
5top date
. June 1993 »

s m t w t f =

12 3 4|8
6 7 2 91011 12
1314151617 18 19
20 21 22 23 24 25 26
27 28 29 30

* 2 davs

E3)

The pr ot oDat el nt er val Popup is based on the pr ot oGener al Popup
proto. It has the following two child views declared in itself:

» start uses the prot oDat ePi cker proto and implements the starting
date section of the pop-up view.

= st op uses the pr ot oDat ePi cker proto and implements the ending date
section of the pop-up view.

5-70 Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

New
popup: New(initialDates, bbox, callbackContext)

This method is called to open the pop-up view.

initialDates An array with two values (as returned by the Ti e
function) specifying the initial range of dates to display
as selected.

bbox A bounding box for the pop-up view. This box is only
suggested; generally you would use: G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

NewTime

callbackContext: NewTi nme(startDate, stopOrMax)
This method is called each time the user changes the selection.
startDate The new start date.

stopOrMax The new stop date, or the maximum time if ongoing.
Note that the maximum time is defined as the constant
kMaxi munili ne : = Ox1FFFFFFF.

PickActionScript
callbackContext: Pi ckAct i onScri pt (startDate, stopOrMax)

This method is called when the user taps the close box.
startDate The new start date.

stopOrMax The new stop date, or the maximum time if ongoing.
Note that the maximum time is defined as the constant
kMaxi munili me : = Ox1FFFFFFF.

Date, Time, and Location Pop-up Views 5-71

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickCancelledScript

callbackContext: Pi ckCancel | edScri pt ()
This method is called if the pop-up view is cancelled by tapping outside it.

protoMultiDatePopup

This proto lets the user specify a range of dates. To select a single date, use
the pr ot oDat ePopup. The user confirms the selected range by tapping the
close box; tapping outside the pop-up view cancels it.

Figure 5-30 shows the result of selecting a range of dates.

Figure 5-30 Example of a multidate pop-up view

L June 1993 »
s m t w t f =5
1 2 3 4 5
TR 910171 g
121415161718 19
2021 222324 25 26
27 2829 30

New

popup: New(initialDates, bbox, callbackContext)
This method is called to open the pop-up view.

initialDates An array specifying a range of dates to display as
selected. These dates have to be in sequence. For

5-72 Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

example, one day after another (for example, Tuesday,
Wednesday, and Thursday) or the same day of the week
(for example, first, second, and third Tuesday of the
month).

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

PickActionScript

callbackContext: Pi ckAct i onScri pt (selectedDates)
This method is called when the user taps the close box.

selectedDates An array containing the selected range of dates.

PickCancelledScript
callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

protoYearPopup

This proto lets the user specify a year. The user confirms the selected range
by tapping the close box; tapping outside the pop-up view cancels it.

Figure 5-31 shows the result of selecting a year.

Figure 5-31 Example of a year pop-up view

7022

Date, Time, and Location Pop-up Views 5-73

5-74

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

New

popup: New(initialYear, bbox, callbackContext)

This method is called to open the pop-up view.

initialYear The year to display initially, specified as an integer (for
example, “1995”).

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

NewYear

callbackContext: NewYear (year)
This method is called each time the user changes the selection.

year The new year, specified as a year.

DoneYear

callbackContext: DoneYear (year)
This method is called when the user taps the close box.

year The selected year, specified as a year.

PickCancelledScript

callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled when the user taps
outside of it; if you don’t supply this method, there is no default action.

protoTimePopup

This proto permits setting a time with a digital clock. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-32 shows how the digital clock appears.

Figure 5-32 Example of a time pop-up view

[10:18]El

New

popup: New(time, increment, bbox, callbackContext)
This method is called to open the pop-up view.

time An array containing one element, an integer
representing the initial time to display as selected (as
returned by the Ti ne function).

increment An increment for the pop-up view that determines the
granularity for the pop-up view. The value “1” specifies
one minute; try “15”, “30”, and “60”.

bbox A bounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

NewTime

callbackContext: NewTi nme(time)
This method is called whenever the time is changed.

time The new time.

Date, Time, and Location Pop-up Views 5-75

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickActionScript

callbackContext: Pi ckActi onScri pt (time)
This method is called when the user taps the close box.

time The selected time.

PickCancelledScript

callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by tapping outside
it.This method is called if the pop-up view is cancelled by tapping outside it.

protoAnalogTimePopup

This proto permits setting a time with an analog clock. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels
it.

Figure 5-33 shows how the analog clock appears.

Figure 5-33 Example of an analog time pop-up view

5-76

Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

New

popup: New(time, increment, bbox, callbackContext)
This method is called to open the pop-up view.

time An array containing one element, an integer representing
the initial time to display as selected (as returned by the
Ti me function).

increment An increment for the pop-up view that determines the
granularity for it. The value “1” specifies one minute;
try “15”, “30”, and “60”.

bbox Abounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

NewTime

callbackContext: NewTi me(time)
This method is called whenever the time is changed.

time The new time.

PickActionScript

callbackContext: Pi ckAct i onScri pt (time)
This method is called when the user taps the close box.

time The selected time.

PickCancelledScript
callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled when the user taps
outside it; if you don’t supply this method, there is no default action.

Date, Time, and Location Pop-up Views 5-77

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoTimeDeltaPopup

This proto lets the user choose a time period, or delta. The user confirms the
selection by tapping the close box; tapping outside the pop-up view cancels

it.

Figure 5-34 illustrates this time choice option.

5-78

Example of a time delta pop-up view

[+/0/9:1010/x)

popup: New(initialDelta, params, bbox, callbackContext)

This method is called to open the pop-up view.

initialDelta

params

bbox

callbackContext

An integer representing the initial delta time. A value of
“1” specifies one minute, and the sign of the value
specifies whether the delta is positive (+) or negative (-).

A frame containing the following slots:

i ncrenent An increment value that determines the
granularity for the pop-up view. The
value “1” specifies one minute; try “15”,
1130//, and 1160’/'

m nVal ue Optional. A minimum delta value.

maxVal ue Optional. A maximum delta value.

A bounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PickActionScript
callbackContext: Pi ckAct i onScri pt (delta)

This method is called when the user taps the close box.

delta The selected delta time.

PickCancelledScript
callbackContext: Pi ckCancel | edScri pt ()

This method is called if the pop-up view is cancelled by tapping outside it.

protoTimelntervalPopup

This proto lets the user choose a time interval by specifying a start and stop
time. The user confirms the selection by tapping the close box; tapping
outside the pop-up view cancels it.

Figure 5-35 illustrates a time interval selection.

Figure 5-35 Example of a time interval pop-up view

S5tart time

5top time

1 khiowr

. 1 minute E]

Date, Time, and Location Pop-up Views 5-79

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

New

popup: New(initialTimes, increment, bbox, callbackContext)

This method is called to open the pop-up view.

initial Times An array with two values (as returned by the Ti me
function) specifying the initial range of start and stop
times.

increment An increment value that determines the granularity for

the pop-up view. The value “1” specifies one minute; try
111511, 113011, and 116011.

bbox Abounding box for the pop-up view. This box is only
suggested; generally, you would use : G obal Box() .

callbackContext The name of the view to which callback messages
should be sent. Specify sel f if you define these
methods in the pop-up view.

PickActionScript

callbackContext: Pi ckActi onScri pt (startTime, stopTime)
This method is called when the user taps the close box.
startTime The selected start time.

stopTime The selected stop time.

PickCancelledScript

callbackContext: Pi ckCancel | edScri pt ()
This method is called if the pop-up view is cancelled by tapping outside it.

5-80 Date, Time, and Location Pop-up Views

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Number Pickers

This section describes the protos used to display pickers with numbers.

protoNumberPicker

This proto is used to display a picker from which the user can select a
number. Figure 5-36 shows an example.

Figure 5-36 Example of a number picker
I .
15181014

The following slots are of interest:

Slot descriptions

m nVal ue Required. The minimum value in the list.
maxVal ue Required. The maximum value in the list.
val ue Required. The initial and currently selected value.

showlLeadi ngZer os
Optional. Set this slot to non-ni | to show leading zeros;
for example, to show “007” with the two leading zeros.

This proto is based on a view of the cl Pi ct ur eVi ewclass. It has one child
view, for each digit in the number; these views implement the picker
functionality of the proto.

Number Pickers 5-81

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

PrepareForClick

picker: Prepar eFor C i ck()

This method is called before a click on an individual digit is processed. The
val ue slot is updated accordingly.

ClickDone

picker: C i ckDone()

This method is called after a click on an individual digit is processed. The
val ue slot is updated accordingly. You can override this method and check
the val ue slot to determine the selected value.

Picture Picker

5-82

This section describes the protos used to create a picture as a picker.

protoPictindexer

This proto is used to create a view with a horizontal array of pictures, one of
which the user can tap. When the user taps a picture, it is highlighted, and
the system sends the | ndexd i ckScri pt to signal which picture was
selected. Figure 5-37 shows a typical array of pictures from which a user
might make a selection.

Picture Picker

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-37 Example of an indexed array of pictures

Circle

mCR

The following methods are defined internally: Vi ewSet upDoneScr i pt,

Vi ewDrawScript,Viewd ickScript,H lite Unhilite,and
TrackPi ct Hi |i t e. If you need to use one of these methods, be sure to call
the inherited method also; for example,

i nherited: ?Vi ewSet upDoneScri pt ()

or the proto may not work as expected.

The pr ot oPi ct | ndexer is based on a view of the cl Pi ct ur eVi ewclass.

Slot descriptions

vi ewBounds Set to the size and location in which you want the view
to appear.
viewJustify Optional. The default setting is vj Center H +

vjCenterV + vjParentFul | H +
vj Par ent Bot t onV.
vi ewFor mat Optional. The default setting is vf Fi | | Whi t e.

icon The bitmap serving as the picture. This picture should
be a single bitmap containing multiple objects or
symbols that are all of the same width and arranged
next to each other in a vertical row.

Picture Picker 5-83

5-84

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

i conBBox A bounds frame giving the bounds of the bitmap within
the view. (The view can be bigger than the bitmap.) The
width is the only important dimension calculated from
the bounds frame. The width is used to calculate the
size of the active rectangle; that is, the rectangle used to
differentiate and highlight each of the objects in the
bitmap. The width of the bitmap is divided into equal
rectangles (width=num ndi ces) that extend the full

height of the view.
numl ndi ces The number of objects or symbols in the bitmap.
cur | ndex This slot is set to the index of the currently selected item

in the bitmap. Note that the first item has an index of
zero. This slot must initially be set to an integer.

IndexClickScript

picker: I ndexd i ckScri pt (index)
This method is called whenever the user taps the bitmap.

index The index of the item that was chosen from the pop-up
array. Note that the first item has an index of zero.
Here is an example of a template using | ndexCl i ckScri pt:

i ndexView := {...
_proto: protopictindexer,
vi ewBounds: {top: -25, left: 0, right: 0, bottom 0},
vi ewdustify: vj CenterHt+vj Cent er V+vj Par ent Ful | H+
vj Par ent Bot t onV,

vi ewFormat ;. vfFi |l Wite+vfPen(1)+vf FraneBl ack,
i con: shapesBitmap, //square, roundrect, circle, triangle
i conBBox: {top: O, left: O, right: 100, bottom O},
num ndi ces: 4,
I ndexd i ckScript: func(currlndex)

begi n

Set Val ue(t heText, 'text, shapeNanmeArray[currlndex]);

end,

Picture Picker

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

/1 set highlight to first itemon entry

curl ndex: O,

shapeNanmeArray: ‘["Square", "Oval", "Circle", "Triangle"]
-}

Overview Protos

The protos in this section are used to create overviews of data; they include
some protos specifically designed to display names from the Names soup.

protoOverview

This proto provides a framework for doing an overview view of data in an
application. Each item in the overview has one line; the user can scroll the
list and pick individual items or multiple items in the list.

Each entry in the list is a set of shapes is created by the client application.
Figure 5-38 is an example of a pr ot oOver vi ewlist.

Overview Protos 5-85

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-38 Example of an overview list

5-86

2:19 Tue 878 4 Unfiled Notes &

i @ the rain in Spain
Sun 855 1147 am :
i [E]Map 2 Gerry’s house... sketch-
: Tue 8/2 1:52 pm f
-1 [i-] bread...Cheese...tomatos...Oranges!
' Tue 242 1:53 pm =
i [E] Christine’s Secret
: Tue S/5 1:54 pm
1] -empty-
Tue 272 1:55 prin

Note that the Vi ewd i ckScri pt and Vi ewDr awScr i pt methods are used
internally in the pr ot oOver vi ewand should not be overridden.

Slot descriptions

aut oDesel ect Optional. If you set this to t r ue, the item the user picks
in the overview does not remain highlighted when the
pen leaves it. Otherwise, when the pen leaves the item,

it remains highlighted.

vi ewBounds Set to the size and location where you want the
overview to appear.

vi ewFl ags The defaultisvVi si bl e + vApplication +
vd i ckabl e.

cursor Optional. You probably need this if you want to use

pr ot oOver vi ewdirectly, rather than using

pr ot oSoupOver vi ew This contains a cursor-like
object that performs the same functions as a soup

cursor. See “Using protoOverview” (page 6-24) in
Newton Programmer’s Guide for details.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

I'i neHei ght Optional. The default is 32, which specifies the height in
pixels of each item in the overview.
sel ect | ndent Optional. Specifies the left margin within which

selection highlighting and behavior occur. If an item is
tapped within this margin, the defaultHi t I t em
method calls the Sel ect | t emmethod with the item
index. The default, if you don’t supply this slot, is 18.
vi ewFont Optional. The default setting is syst enfont 10Bol d.
not hi ngCheckabl e
Optional. If you don’t want checkboxes at all, set this
slot to non-ni | . None of the list items will be indented
and the vertical line down the left side of the list will be
removed.

SetupAbstracts

overview: Set upAbst r act s(cursor)

A method that should be called from the Vi ewSet upChi | drenScri pt as
the instantiator.

cursor A cursor or cursor-like object.

Abstract

overview: Abst r act (item, bounds)

This method should return a shape or shape list representing an item in the
overview. It is passed two parameters, the first an item obtained from the
cursor-like object passed to Set upAbst r act s, the second a bounds frame
within which the returned shape should be placed.

The bounds value is not automatically offset by the sel ect | ndent value.
Therefore, you should use sel ect | ndent rather than bounds.| ef t to make
certain that the shape returned fits in the frame.

item The item returned from the cursor-like object that was
passed to the Set upAbst r act s method.

bounds Abounds frame within which the returned shape
should be placed.

Overview Protos 5-87

5-88

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

CheckState

overview: CheckSt at e(entry)

If the not hi ngCheckabl e slotis set to ni |, the Set UpAbst r act s method
calls CheckSt at e for each entry. You can override CheckSt at e to return
one of the following values:

Value Meaning

' not Checkabl e Cannot be checked; don’t put a checkbox here.
nil Can be checked, but isn’t.

true Can be checked, and is.

ChecksSt at e returns ni | by default (checkable, but not checked). If
checkboxes are specified, they are centered vertically based on the value in
thel i neHei ght slot.

entry A soup entry.

Hitltem

overview: Hi t | t en{ hitindex, xcoord, ycoord)

A method that is called when an item is tapped. The default method returns
non-ni | if it handled the tap; that is, if it determined it should select the item
(if the tap was within the sel ect | ndent margin). In general, you should
first call i nheri t ed: ?Hi t | t em and handle the tap yourself only if the
inherited method returns ni | .

hitindex The index to the item in the list (the first one being zero).

xcoord The X coordinate of the tap, relative to the left edge of
the item that was tapped.

ycoord The Y coordinate of the tap, relative to the top edge of

the item that was tapped.

Note that hitIndex is relative to the displayed items, not the total items. You
need to track what the real “top” index is, as shown in the following example:

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

func(hitlndex, xcoord, ycoord)
begi n
i f xcoord < sel ectlndent then
inherited: Hitlten(hitlndex, xcoord, ycoord) ;
el se begin
hitlndex := hitlndex + savel ndex;
print("hit item " & hitlndex) ;
:Dirty(); // refresh the view
end ;
end

Notice that this code assumes you have a value savel ndex that can be
added to the the hi t | ndex to find the index of the actual item.

IsSelected

overview: | sSel ect ed(item)
item The entry that the user tapped.

Return't r ue if the item is selected (the checkbox is checked in the overview).
Note that selected is different from highlighted or hit.

Scroller

overview: Scr ol | er (numltems)

Scrolls the contents of the overview. The default method does nothing. If
overridden, Scr ol | er should cause the Set upAbst r act s method to be
called again, for example, by calling RedoChi | dr en.

numltems The number of items to scroll; a negative value means
“scroll upwards.”

Selectltem

overview: Sel ect | t en(hitIndex)

Sel ect | t emis called each time the checkbox for an item is tapped. You
must provide this method if Sel ect | ndent is greater than 0. It should

Overview Protos 5-89

5-90

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

implement a way of remembering selected items, so the user can file or route
the selected items at a later time and also perform whatever record keeping
is required to toggle the selected state of the item at hitIndex. The hitindex is
relative to the displayed items, not the total items; you need to track what the
real “top” index is.

hitindex An integer identifying an item relative to top of
displayed items.

ViewSetupChildrenScript

overview: Vi ewSet upChi | drenScri pt ()

You must provide this method. You must send the Set upAbstract s
message from this script. Note that Set upAbst r act s is expecting a cursor
or cursor-like object. See “Using protoOverview” (page 6-24) in Newton
Programmer’s Guide, for a discussion of how to create a cursor-like object.

protoSoupOverview

This proto is similar to pr ot oOver vi ew but is designed to work with data
that consists of soup entries. It expects each overview item to be a soup entry
whether or not the cursor itself is an ordinary soup cursor. Figure 5-39 shows
an example of this proto.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-39 Example of a soup entry proto

ﬂ\."E\"iE
heart, helped
rules, voice
keeping, death
joined, spend
volume, steps
visit corp.
either corp.
system corp.
together corp.
adding corp.
young Group
similar Group
getting Group
holding Group
wrote Group
Cities, ideas

A default Vi ewSet upChi | dr enScri pt method calls Set upAbstract s,
passing the cursor in the cur sor slot. If you override this method, you
should call the inherited method once you've set up the cursor slot.

Slot descriptions

cur sor Required. Set this slot to a cursor describing your
entries. Initialized in Vi ewSet upFor nscri pt .

Overview Protos 5-91

5-92

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

All other slots in pr ot 0SoupQOver vi eware the same as in pr ot oOver vi ew

Scroller

overview: Scr ol | er (numltems)

This optional method scrolls the overview, with respect to the specified
cursor (in the cur sor slot). The default is to take an integer and move the
cursor forward (positive) or backward (negative). If you try to move the
cursor forward past the end, the last item is returned. If you try to move the
cursor backward before the first item, the first item is returned.

numltems The number of items to scroll; a negative value means to
scroll upwards.

Selectltem

overview: Sel ect | t en(index)

This method remembers selected items, doing the right thing with respect to
the specified cursor (in the cur sor slot). It keeps a list of the selected items
by getting entry aliases for them, hence the need for the items to be real soup
entries.

index The index of an item in the overview. The first item is 0.

Abstract

overview: Abst ract (entry, bounds)

This required method should return a shape or shape list representing an
item in the overview.

entry The entry returned from the cursor that was passed to
the Set upAbst r act s method.

bounds A bounds frame within which the returned shape
should be placed.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

IsSelected

overview: | sSel ect ed(entry)
This method returns non-ni | if the specified entry is currently selected.

entry An entry from the cursor.

ForEachSelected

overview: For EachSel ect ed(function)

This method calls the specified function once for each entry that is currently
selected. The function is passed one argument, the entry.

function A function object.

protoListPicker

This proto provides a scrollable list of items, from either a soup or an array
(or both), from which one or many items may be chosen. The list is built from
a soup, using a cursor. By default, this proto queries the “Names” soup, but
you can change it to query a different soup.

The selections are intended to be persistent, so enough information from
soup entries is maintained to allow the selection to be displayed even if the
soup is removed.

The pr ot oLi st Pi cker proto is based on a view of the ¢l Vi ewclass.

The vi ewFl ags, vi ewBounds, vi ewJust i fy, and vi ewFor mat slots can
be overridden at will. The Vi ewScr ol | UpScri pt and

Vi ewScr ol | DownScr i pt methods are provided for the developer to
invoke.

The following slots and methods are used internally:

Vi ewSet upChi | drenScri pt, Vi ewDr awScri pt, Vi ewQui t Scri pt,
f OpenEdi t Vi ew nowShowi ng, f Bor der, cur sor, myQuer ySpec,

f Current Key, Mar kCur sor Posi tion,filterLabels,

Set upFi | tering, Set upCur sor, RedoCur sor, Get Target | nf o,

Fi | t er Changed, f ol der Tabs, AZt abs, and | i st Base.

Overview Protos 5-93

5-94

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

See “Using protoListPicker” (page 6-26) in Newton Programmer’s Guide for an
example of this proto and a discussion of using it.

Slot descriptions
decl areSel f Set to' pi ckBase.

defaul t Justification
The default is vj Par ent Ful | H + vj Par ent TopV

vi ewFl ags The defaultis vVisible + vApplication
+vC i ckabl e.

vi ewBounds Set to the size and location where you want the list of
scrollable items to appear.

I i neHei ght Optional. Set to the height, in pixels, of each line in the

list. The default setting is the maximum of the font
height and the checkmark height.

['i st For mat Optional. Specify vi ewFor mat flags to be used for the
vi ewFor mat slot of the list child view. The default
setting is vf FraneGray + vfPen(1).

pi cker Def Required. A frame used to determine the overall
behavior of the list picker. This frame should be based
on pr ot oNaneRef Dat aDef or
pr ot oPeopl eDat aDef . For an example, see “Using
the Data Definitions Frame in a List Picker” (page 6-29)
in Newton Programmer’s Guide

sel ected Required. An array of references. Set this slot in the
Vi ewSet upFor nScr i pt method if you want the list to
be displayed with one or more items preselected.

Note that the name reference data definition contains
the unsel ect ed slot, which can be used to override
the preselection of individual items (even though they
are in the sel ect ed array).

While the list picker is open, the selected list is not valid
until the picker’s Vi ewQui t Scri pt has run. Any
operations on the data should be postponed, either by
using the ' post Qui t deferral mechanism, or by calling
the inherited Vi ewQui t Scri pt method before your
own operations.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

soupToQuery Optional. A string specifying the union soup to query,
or a function that returns a soup. This slot overrides any
soup specified in the data definition. By default, no
soup is queried.

guer ySpec Passed to the query routine. The t agSpec slot is
replaced internally, and the val i dTest may be
enhanced internally to allow the checkbox filtering and
folder support. This slot overrides any quer ySpec
specified in the data definition.

suppr essNew Optional. If this slot is present and its value is non-ni | ,
the New button is not drawn.
suppressScrol lers

Optional. If this slot is present and its value is non-ni | ,
the up and down scroll arrows are not drawn.

suppr essAZTabs Optional. If this slot is present and its value is non-ni |,
the a-z tabs are not drawn.

suppr essFol der Tabs
Optional. If this slot is present and its value is non-ni | ,
the folder tabs are not drawn.

suppr essSel Onl yCheckbox
Optional. If this slot is present and its value is non-ni |,
the Selected Only checkbox is not drawn.

suppr essC oseBox
Optional. If this slot is present and its value is non-ni | ,
the close box is not drawn.

suppr essCount er
Optional. Suppresses the text at the bottom right
indicating how many items are selected

revi ewSel ecti ons
Optional. If present and non-ni | , and if
si ngl eSel ect is ni |, when the picker is opened with
preselected items, the Selected Only checkbox is
checked.

readOnly Optional. If present and non-ni | , constrains the
interface so that the currently selected list can be
viewed but not changed. All taps in the body of the

Overview Protos 5-95

5-96

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

picker are ignored, the New button and Selected Only
checkbox are hidden, and the checkboxes are
suppressed.

dont Pur ge Optional. If present and non-ni | , prevents unselected
name references from being stripped out of the selected
array when the picker is closed. You may also specify
this slot in the data definition.

soupChangeSynbol
The symbol to use in the RegSoupChange message; by
default, its' | i st pi cker.

The list picker automatically registers notification of soup change in the soup
it will query. By default, only the SoupEnt er s and SoupLeaves messages
are handled. To handle any other messages, or to override the default
behavior for the SoupEnt er s or SoupLeaves change types, add a slot
whose name is the changeType you wish to support, and make its value a
function of a soupNarne and the changeDat a. This function will be called
when the soup notification is received with that changeType.See Table 9-1
(page 9-15) for a list of available changeType values.

SoupEnters

picker: SoupEnt er s(soupName, changeData)

Called when the list picker is notified that the soup has changed and the
changeType is ' soupEnt er s. This means that the soup has become available.
By default, redisplays the cursor contents.

soupName The name of the soup that has become available.
changeData The soup itself.
SouplLeaves

picker: SoupLeaves(soupName, changeData)

Called when a soup becomes unavailable. This method synchronizes the
cursor in case it was pointing to an entry removed with a soup and then
refreshes the list.

soupName The name of the soup that has become unavailable.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

changeData The soup itself. Note that you shouldn’t use this soup,
since this message means it is no longer available.

SetNowShowing

picker: Set NowShowi ng(value)
Sending this message is equivalent to tapping the Selected Only button.

value A symbol, where ' al | means show all entries and
" sel ect ed means show only selected entries.

GetSelected

picker: Get Sel ect ed(activeOnly)
This method returns a clone of the selected array.

activeOnly A Boolean which, if non-ni |, returns an array that is
stripped of any _unsel ect ed name references.

protoNameRefDataDef

The pr ot oLi st Pi cker proto is driven in large part by the data definition
specified in the pi cker Def slot. The pr ot oNaneRef Dat aDef proto is
provided for creating your own data definitions.

Figure 5-40 (page 5-106) shows an example of a pr ot oLi st Pi cker whose
data definition is based on pr ot oPeopl eDat aDef .

All calls to methods in the pi cker Def slot are handled by sending the
message to the frame itself, so the methods described below can use
inherited functions and store data in the frame as needed.

Slot descriptions

name The name that appears in the top-left corner of the
picker. The default value in Newton devices with
English ROMs is “Names”.

class A symbol specifying the class to which all name

references should be set; the default value is ' nanmeRef .

Overview Protos 5-97

5-98

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

entryType When a soup entry is created, its class should be set to
this type. The makeNaneRef routine should respect
this slot.

col ums An array of column specifications; for details, see

“Column Specifications” (page 5-3); for an example, see
“Specifying Columns” (page 6-29) in Newton
Programmer’s Guide. The default is a single, full-width
column whose f i el dPat his' nane.

si ngl eSel ect Optional. If this slot is present and its value is non-ni |,
only a single item at a time can be selected from the list.
(Selecting additional items deselects the original.)

Do not pre-load the sel ect ed slot with multiple
selected name references and then specify
si ngl eSel ect .

soupToQuery A string specifying the union soup to query or a
function returning a soup. All data displayed is
retrieved from this soup.

quer ySpec Passed to the query routine. The t agSpec slot is
replaced internally, and the val i dTest may be
enhanced internally to allow the checkbox filtering and
folder support. By default all Names entries are
displayed.

val i dati onFrane
A validation frame acceptable to the Val i di t yCheck
system global function. Used by the default
Val i di t yCheck method. The default valueis ni | .

MakeCanonicalNameRef

dataDef: MakeCanoni cal NanmeRef (object, dataClass)

Creates and returns a name reference with no application-specific slots. This
method should not be overridden, but can be called if needed.

object An entry, an alias, a name reference, a frame, or ni | .

dataClass Optional. The class of the entry.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

MakeNameRef
dataDef: MakeNaneRef (object, dataClass)

Creates a name reference with one additional slot nane (by calling
MakeCanoni cal NaneRef). Overrides of this method should generally call
MakeCanoni cal NameRef and fill in the slots that are needed.

If you are using pr ot oLi st Pi cker to browse an array, this method should
be overridden to add the slots returned by MakeCanoni cal NaneRef to the
items in the array. To remove these slots, use the Pr epar eToAdd method.

object An entry, an alias, a name reference, a frame, or ni | .

dataClass Optional. The class of the entry. If this is not specified,
it’s taken from the data definition.

Get
dataDef: Get (object, fieldPath, format)

Returns a value from the specified object, retrieved from the column
specification.

object An entry, an alias, a name reference, a frame, or ni | .

fieldPath A symbol uniquely identifying the field that should be
displayed in this column. This symbol is used by the list
picker to retrieve the data, and (in most cases and
certainly the default case) is the actual path in the entry
to the data field desired. However, it is possible to use
the symbol purely as a marker—for example if the
particular data required is a calculated aggregate of a
number of data fields—as long as all the routines in the
data definition that use this symbol are overridden to
recognize this usage.

format Determines the value returned; possible values are
"text,'sortText,ornil.Ifnil, the actual field is
desired. If ' t ext, a text representation is requested. The
value' sort Text should be used only for the first

Overview Protos 5-99

5-100

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

column in the col ums array. For example, assume the
following is defined:

local aNanme := '{first: "Cindy", last: "Peters"};

The result of calling the default Get method

[: Get(aNarme, 'nanme, fornat)]

depends on the value of the format parameter:

't ext "Cindy Peters"
"sort Text "Peters, Cindy"
ni | {first: "Cindy", last: "Peters"}

If the first column specification has f i el dPath = ' fruit Type, the
overridden Get function should support' sort Text for' f rui t Type, but
all other fields need only supportni | and' t ext.

GetPrimaryValue

dataDef: Get Pri mar yVal ue(object, format)

Called by the default Get method to retrieve the data. The default method
returns ni | .

object An entry, an alias, a name reference, a frame, or ni | .

format Determines the value returned; see Get method for
details.

Hitltem

dataDef: Hi t | t e tapInfo, context)

Called when the user taps in the picker. This method should return either a
reference to a view opened as a result of the tap, or ni | . If a view is opened,
all tap processing by the list picker is suppressed until the data definition
passes control back to the list picker by calling cont ext : Tapped(acti on);
described on page 5-102.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

tapInfo A frame containing the following slots:
nanmeRef The name reference that was tapped.

t apl ndex The visible index of the name reference, or
ni | for “new.”

bbox The bounding box for the cell that was
tapped.

fi el dPath Thefi el dPat h for the column tapped,
or' newif it was the New button.

edi t Pat hs All columns for this list.
popup Used in pop-up processing.
context The view handling the tap.

MakePopup
dataDef: MakePopup(object, fieldPath)

Returns ni | or an array suitable for passing to the PopupMenu method. If
the value of an item in the pop-up view is different from the i t emslot, the
slot val ue should hold the proper value. If the item is to open the editor, the
val ue slot should be the symbol ' openedi t or. This method is called by
the list picker to determine when to precede a column with a diamond
character. If you override the default Hi t | t emmethod, this method should
return non-ni | to get the diamond character.

If an array is returned, it is popped up by PopupMenu. If ni | is returned, the
Handl eTap method is called.

object An entry, alias, a name reference, a frame, or ni | .

fieldPath A symbol uniquely identifying the field that should be
displayed in this column. This symbol is used by the list
picker to retrieve the data, and (in most cases and
certainly the default case) is the actual path in the entry
to the data field desired.

Overview Protos 5-101

5-102

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Tapped

context: Tapped(action)

Call this method from the Hi t | t emmethod to indicate that a tap has been
handled.

action A symbol indicating what action to take in response to a
tap. The following values can be specified:
' sel ect Select the item.
"toggle Toggle between selected and unselected
state.
ni | Do nothing.

New

dataDef: New(tapInfo, context)

Called when the user taps the New button. This method should return either
a reference to a view opened as a result of the tap, orni | . If a view is
opened, all tap processing by the list picker is suppressed until the data
definition passes control back to the list picker by calling

cont ext : Tapped(acti on).

If aval i dati onFr ane slot is provided, the default Newmethod opens a
label input line slip (as in the default editing for an item) allowing editing of
anew entry with one child view for each column in the picker.
taplInfo A frame containing the following slots:

naneRef The name reference that was tapped.

tapl ndex The visible index of the name reference, or
ni | for “new.”

bbox The bounding box for the cell that was
tapped.

fi el dPath The field path for the column tapped, or
' newif it was the New button.

edi t Pat hs All columns for this list.
popup Used in pop-up processing.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

context The view handling the tap.

DefaultOpenEditor

dataDef: Def aul t OpenEdi t or (tapinfo, context, why)

You can call this method to open an edit view, for editing an existing record
or in response to a tap on the New button.

The Def aul t OpenEdi t or method causes a call to either
Def aul t Edi t Done or Def aul t NewDone when the edit slip is closed.

tapInfo A frame containing the following slots:

nameRef The name reference that was tapped.

t apl ndex The visible index of the name reference, or
ni | for' new

bbox The bounding box for the cell that was
tapped.

fi el dPat h The field path for the column tapped,
or' newif it was the New button.

edi t Pat hs All columns for this list.

popup Used in pop-up processing.
context The view handling the tap.
why A symbol that can be either ' edi t or' new

OpenEditor

dataDef: OpenEdi t or (taplnfo, context, why)

You can add this method and call it instead of Def aul t OpenEdi t or if you
need more flexibility than is provided by Def aul t OpenEdi t or. You also
need to draw the layout for each editor you need.

The arguments and return value are as per Def aul t OpenEdi t or. See
“Validation and Editing in protoListPicker” (page 6-31) in Newton
Programmer’s Guide for an example.

tapInfo A frame containing the following slots:
naneRef The name reference that was tapped.

Overview Protos 5-103

5-104

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

t apl ndex The visible index of the name reference, or
ni | for “new.”

bbox The bounding box for the cell that was
tapped.

fi el dPath The field path for the column tapped,
or' newif it was the New button.

edi t Pat hs All columns for this list.

popup Used in pop-up processing.
context The view handling the tap.
why A symbol that can be either ' edi t or' new

NewEntry

dataDef: NewEnt r y(nameRef, label)

Returns a new soup entry, filled in as much as possible from the name
reference passed in, and with the tags slot set appropriately so that the entry
is in the current folder. The new entry’s class slot is given the value specified
by the car dType slot in the data definition.

nameRef Holds the new soup information.
context The view handling the tap.
Note

If the soup doesn’t exist, this method fails silently. O

ModifyEntry

dataDef: Modi f yEnt r y(nameRef, fieldPath)

Returns the modified entry. Sets the field named by fieldPath in the
underlying soup entry for the name reference. It then calls
Ent ryChangeXmi t on the entry.

nameRef The name reference for the entry that underwent the
modifications.
fieldPath The array of the paths into the nameRef that changed.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Validate
dataDef: Val i dat e(nameRef, pathArray)

You can add this method if you want to deal with nested soups or otherwise
need more flexibility than you get when you use the Val i dat eFr ame slot.
This should return an array of paths that failed, or an empty array.

nameRef Name reference to validate.
pathArray Array of paths to validate in the name reference.

Validate each path in pathArray in the given nameRef. Accumulate a list of
paths that are not valid and return them. See “Validation and Editing in
protoListPicker” (page 6-31) in Newton Programmer’s Guide for an example.

protoPeopleDataDef

The pr ot oPeopl eDat aDef , which is based on the
pr ot oNaneRef Dat aDef , is the basis of the built-in data definitions used by
pr ot oPeopl ePi cker and pr ot oMeet i ngpl acePi cker.

Figure 5-40 shows an example of a pr ot oLi st Pi cker whose data
definition is based on pr ot oPeopl eDat aDef .

Overview Protos 5-105

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure5-40 A protolLi st Pi cker based on pr ot oPeopl eDat aDef

& All Items

R T A T O Ca Y v TR,

! Untitled Owner

1 Answer, Until

! Behind, Natural
Dropped, Range

—1 Going, Order

! Ideas, Night
Important, However

i1 Instance, Least 7
7 Killed, Quality =
i1 last, this hd

i Least, Every

-1 Music, Class
Peace, Women
—i Picker 2, From
! Picker 3, Test
Program, Paper
—i Smaller, Reason
! Times, Killed

-1 Selected Onlv @

Slot descriptions

entryType When a soup entry is created, its class should be set to
this type. The makeNaneRef routine should respect this
slot. The default value is ' per son.

soupToQuery A string specifying the union soup to query or a
function returning a soup. All data displayed is

5-106 Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

pri maryPat h

retrieved from this soup. By default the Names soup is
queried.

Optional. Symbol used to indicate that a specific column
is the primary path. The primary path is treated
specially in that the data displayed can be retrieved
from multiple source slots; that is, the primary path for
a card is the name, but for a company card the name
data comes from the conpany slot. The mapping of
where the data comes from is specified by the

pri mar yPat hMapper.

pri mar yPat hMapper

super Synbol

rout ePat h

Optional. A frame where each slot maps an entry class
to the slot from which the data for the primary path
should be retrieved. So, for example, the

pri mar yPat hMapper for the cardfile is

{person: nane,

owner: nane,

conpany: conpany,

group: group,

wor ksite: place,}

(Used exclusively to support routing.) Used as usual for
dat aDef s. However, if the super Synbol is

" groupTr anspor t, the list picker type defined by this
naneRef is available as one of the routing choices in the
group card in the Names application. The name
displayed in that application is the value of the nanme
slot in the data definition.

(Used exclusively to support routing.) Used by the
Get Rout i ngl nf o function to determine which
naneRef slot contains the routing information.

The pr ot oPeopl eDat aDef uses the methods described in the following
sections. The additional methods Get Rout i ngl nf o,

Get | t enRout i ngFr anme, Get Rout i ngTi t | e, and Pr epar eFor Routi ng
are used exclusively to support routing. They can be ignored if the data
definition is not intended for routing or can be overridden if necessary.

Overview Protos

5-107

5-108

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Equivalent

dataDef: Equi val ent (nameRefl, nameRef2, pathArray)

This method compares the data in two name references and returns an array
of all paths that contain nonequivalent (in terms of what is displayed) values.

The default method handles strings and immediates; anything more
sophisticated should be overridden here.

nameRefl A name reference.
nameRef2 A name reference.
pathArray An array of paths.

If you are using the default editing methods with a slot containing a frame,
you need to override this method as well as provide aval i dat i onFr ame
(or override the Val i dat e method). The Modi f yEnt r y method is not
responsible for deciding if an entry should be modified; when it is called, all
the paths specified in the f i el dPat h parameters have been changed and
should be entered properly in the appropriate Names soup entry.

Validate

dataDef: Val i dat e(nameRef, pathArray)
This method returns an array of invalid paths.
nameRef A name reference.

pathArray An array of paths.

ModifyEntryPath

dataDef: Modi f yEnt r yPat h(nameRef, entry, path)

This method handles the modification of currently defined Names soup
entries. For nonprimary paths, it sets

entry. (path) := naneRef. (path).For the primary path (phone
numbers, e-mail addresses and so on), it sets the sort On and cl ass slots
correctly.

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

In other words, you should override Modi f yEnt ry as appropriate, iterate
across the paths, write through those for whichentry. (path) : =
nanmeRef . (pat h) isn’t sufficient (other than the primary path), and call the
inherited Modi f yEnt r yPat h for all the others.

nameRef A name reference.
entry A Names soup entry.
nameRef A field path.

GetRoutingInfo
dataDef: Get Rout i ngl nf o(object)

This method retrieves all the routing information for an item. By default, this
method just calls Get Rout i ngFr ane on the item. However, if the item is a
group, this method iterates across each member, as returned by Get (item,
routePath, nil), and recursively calls Get Rout i ngl nf o for each member.

object An entry, alias, name reference, frame, or ni | .

GetltemRoutingFrame
dataDef: Get | t enRout i ngFr ame(item)

This method is required for transport name references. It is called by the
Cet Rout i ngl nf o method to convert the specific routing information into a
form acceptable by the transport.

entry The name reference of the entry from which to get the
routing information.

GetRoutingTitle
dataDef: Get Rout i ngTi t | e(objects, width, font)

Similar to the Get Rout i ngl nf 0 method, Get Rout i ngTi t | e is called by
the transport code to create a string to display as the target of the transport.
The string that is displayed is retrieved from the pri mar yPat h slot.

objects A name reference, an array of name references, or ni | .

Overview Protos 5-109

5-110

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

width The maximum length of the string, as specified in
number of pixels.

font The font in which the string is rendered.

PrepareForRouting

dataDef: Pr epar eFor Rout i ng(nameRef, fieldPath, format)

This method is called to strip any information that is context specific (aliases,
for instance) from the specified name reference.

object A name reference.

protoPeoplePicker

This proto implements a picker showing names from the Names application,
along with associated phone numbers, fax numbers, or email addresses. In
cases where several choices are possible, the picker allows selection using a
pop-up selector. The proto also allows the user to add new entries, or
additional information for existing entries.

This proto works with the data definition registry, using predefined data
definitions to implement the picker behavior.

Slot descriptions

class A symbol specifying the type of data to display, and the
data definition used to display it. You can specify the
following values:

| nameRef . peopl €| names
| nameRef . phone| phone numbers
| naneRef . f ax| fax numbers
| nameRef . emai | | e-mail addresses
sel ect ed This slot is inherited by pr ot oLi st Pi cker and

contains an array of name references for selected items.
These items may have been selected from the picker or
added by the user. Note that some clean-up is
conducted when the Vi ewQui t Scri pt of

prot oLi st Pi cker is called, so the sel ect ed array

Overview Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

should be used only after this executes (in other words,
in a deferred send).

An array of name references may be passed in to the
picker when it is first opened to establish defaults for
the current item selections.

All other behavior is provided by the data definition; see
pr ot oNaneRef Dat aDef for details.

protoPeoplePopup

This proto is similar to pr ot oPeopl ePi cker, but opens a pop-up view
containing the picker (instead of having the picker embedded in the

application).

Slot descriptions
cl ass

sel ect ed

cont ext

Overview Protos

A symbol specifying the type of data to display, and the
data definition used to display it. You can specify the
following values:

| nameRef . peopl e| names

| nameRef . phone| phone numbers
| nameRef . f ax| fax numbers

| nameRef . emai | | e-mail addresses

This slot is inherited by pr ot oLi st Pi cker and
contains an array of name references for selected items.
These items may have been selected from the picker, or
added by the user. Note that some cleanup is conducted
when the Vi ewQui t Scri pt of prot oLi st Pi cker is
called, so the sel ect ed array should only be used after
this executes (in other words, in a deferred send or

' post Qui t operation).

An array of name references may be passed into the
picker when it is first opened to establish defaults for
the current item selections.

Optional. The name of the view containing the
Pi ckAct i onScri pt method.

5-111

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

options All slots in this frame are copied to the
prot oLi st Pi cker view, so anything that can be
specified to pr ot oLi st Pi cker can be specified in the
opt i ons slot. You can override any slot in the pop-up
view; for instance, the suppr essNewslot.

PickActionScript

picker: Pi ckActi onScri pt (selected)
This method is called when the pop-up view is closed.
selected The sel ect ed array.

All other behavior is provided by the data definition; see
pr ot oNaneRef Dat aDef for details.

Roll Protos

5-112

These protos are used to implement roll views. A roll view consists of several
discrete subviews, arranged vertically, one above the other. The roll can be
viewed in overview mode, where each subview is represented by a
single-line description. Any single view or all views can be expanded to full
size.

protoRoll

This proto is used to create a roll-like view that includes a series of
individual items (other views) that the user can see either as a collapsed list
of one-line overview descriptions or as full-size views. When an overview
line is tapped, all the full-size views are displayed, with the one that was
tapped shown at the top of the pr ot oRol | view. Each view occupies the full
width of the pr ot oRol | and the views are arranged one above the other.

The user can then scroll through all the expanded views by using the
universal scrollers (up and down arrows). The user can also tap the

Roll Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Overview button (the dot between the up and down arrows) to get back to
the overview list to select another item.

In the collapsed view, the items in the overview list are preceded by bullets.
Figure 5-41 shows an example of this type of view.

Figure 5-41 Example of a rolled list of items

= Overview of item 1
= Overview of item 2
* Overview of item 3
= Overview of item 4
= Overview of item 5

The following pr ot oRol | methods are defined internally:

Vi ewSet upChi | drenScri pt, Vi ewScr ol | UpScri pt,

Vi ewsScr ol | DownScri pt, Vi ewOver vi ewScri pt, Get Over vi ew and
Showl t em If you need to use one of these methods, be sure to call the
inherited method also (for example,

i nherited: ?Vi ewSet upChi | drenScri pt ()), otherwise the proto may
not work as expected.

The pr ot oRol | is based on a view of the cl Vi ewclass. It has no predefined
child views, though they are dynamically created at run time from the view
templates you place in the i t ers slot.

Slot descriptions

Vi ewFl ags The default setting is vAppl i cati on + vd i ppi ng.

vi ewBounds By default, the bounds are set to the entire screen,
beginning 16 pixel lines down from the top. This would
leave room for a title at the top if the pr ot oRol | was
placed inside a pr ot 0App.

itens An array of templates that correspond to the items in
the list. Each of these should use pr ot oRol | | t emas

Roll Protos 5-113

5-114

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

its proto. For details, see “protoRollltem” (page 5-119).
Because this slot cannot usually be set until run time,
you should set it in the Vi ewSet upFor nScr i pt
method.

al | Col | apsed Optional. If this slot is set to a non-ni | value, the roll is
initially displayed in a collapsed state; that is, only the
list of one-line overviews is displayed. If this slotis ni | ,
the roll is initially displayed in an expanded state. The
defaultis ni | .

i ndex This slot is used only when al | Col | apsed is set to
ni | ; that is, when the roll is initially displayed in an
expanded state. Items from the i t ens array are
displayed in the roll beginning with the item at this
index.

decl areSel f Must be set to ' r ol | . This identifies the view that
should receive scroll and overview events. This view
must also be immediately enclosed by a parent view
that has the vAppl i cat i on view flag set, in order for
scrolling and overview handling to operate properly.

Here is an example of a template using pr ot oRol | :

nyRol | := {...

_proto: protoRoll,

declareSel f: 'roll,

al | Col | apsed: true,

i ndex: O,

items: |

{ _proto:protoRollltem

hei ght : 50,

overvi ew, "Overvi ew of item 1",

vi ewBounds: {l eft:0,top: 0, right: 0, bottom 50},

stepChildren:[{_proto: protoStaticText,
text:"This is the first test roll itent,
viewdustify: vjParentFullH + vjParentFul |V,
vi ewBounds: {l eft:0,top: 0, right:0, bottom 0},

Roll Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

vi ewf ont : ROM f ont Systenl2 }],

}1
{_proto:protoRollltem
hei ght : 200,

overvi ew "Overview of item 2",
vi ewBounds: {l eft:0,top: 0, right:0, bottom 200},
stepChildren:[{ _proto: protoStaticText,
text:"This is the second test roll itent,
vi ewBounds: {l eft:0,top: 0, right:0, bottom 0}

H

3
{_proto:protoRollItem
hei ght : 200,

overvi ew "Overvi ew of item 3",
vi ewBounds: {l eft:0,top: 0, right:0, bottom 200},
stepChildren:[{ _proto: protoStaticText,
text:"This is the third test roll itent,
vi ewBounds: {l eft:0,top: 0, right:O0, bottom 0}

H

3
{_proto:protoRollItem
hei ght : 50,

overvi ew "Overvi ew of item 4",
vi ewBounds: {l eft:0,top: 0, right:O0, bottom 50},
stepChildren:[{ _proto: protoStaticText,
text:"This is the fourth test roll itent,
vi ewBounds: {l eft:0,top: 0, right:0, bottom 0}
H
.
R

Roll Protos 5-115

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

protoRolIBrowser

This proto is similar to pr ot oRol |, except that the pr ot oRol | Br owser is
an entirely self-contained application. It is based on the pr ot 0App proto, so
it has a title and a status bar. Also, it need not be contained in another view.

The pr ot oRol | Br owser works exactly like the pr ot oRol | in other
respects. Figure 5-42 shows an example of a pr ot oRol | Br owser view in its
collapsed and expanded states:

5-116 Roll Protos

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-42 Example of a collapsed and expanded rolled list of items

Collapsed Wiew

+ [Vletric Conversion

= Currency Exchange

+ Loan Payment

+ Net Present Yalue

= Capital Asset Pricing Model

Expanded Yiew

=MNletric Conversion

gallonssliters

inchesscentimeters

feet/rmeters

rmiles/kilormeters

poundsskilograms

Fahrenheit/ Celsius

~_urrency Exchange

Currency 1
Exchange Rate

Currency 2

I—Luan Payment

Roll Protos

5-117

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

The pr ot oRol | Browser uses the pr ot 0App proto. A pr ot oRol | Br owser
has the following three child views:

= Aroll view, based on pr ot oRol | . This view occupies most of the parent
view, except for the title and status bar areas.

= Atitle, based onprotoTitle.

» A status bar, based on pr ot oSt at us.

Slot descriptions
vi ewBounds

vi ewJustify
vi ewFor mat

title

rollltens

rol | Col | apsed

rol | | ndex

5-118 Roll Protos

Set to the size and location where you want the roll to
appear. By default it is centered horizontally within its
parent view.

Optional. The default setting is vj Par ent Cent er H.

Optional. The default setting is vf Fi | | Whi te +
vf FraneBl ack + vfPen(1l) + vflnset(1l) +
vf Shadow(1) .

A string that is the title. This title appears in a title bar
at the top of the roll. (It uses pr ot oTi t | e to create the
title.)

An array of templates that correspond to the items in
the list. Each of these should use pr ot oRol | | t emas its
proto. Because this slot cannot usually be set until run
time, you should set it in the Vi ewSet upFor nScr i pt
method.

Optional. If this slot is set to a non-ni | value, the roll is
initially displayed in a collapsed state; that is, only the
list of one-line overviews is displayed. If this slotis ni |,
the roll is initially displayed in an expanded state. The
default is non-ni | .

This slot is used only whenr ol | Col | apsed is set to
ni | ; that is, when the roll is initially displayed in an
expanded state. Items from the i t ens array are
displayed in the roll beginning with the item at this
index.

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

decl areSel f Do not change. This slot is set by default to * base. This
identifies the view to be closed when the user taps the
close box.

Here is an example of a template using pr ot oRol | Br owser :

nyRol | Browser := {...

_proto: protoRol | Browser,

title: "My Rol |l Browser",

roll Col | apsed: true,

decl areSel f: ' base,

rollitems: [

{_proto:protoRollItem

hei ght : 50,

overvi ew "Overview of item 1",

vi ewBounds: {l eft:0,top: 0, right:O0, bottom 50},

stepChildren:[{ _proto: protoStaticText,
text:"This is the first test roll itent,
viewdustify: vjParentFul | H + vj Parent Ful |V,
vi ewBounds: {l eft:0,top: 0, right:0, bottom 0},
vi ewf ont : ROM f ont Systenl2 }],

Y, I/ ... and so on

protoRollltem

This proto is used for one of the views in a roll (based on pr ot oRol | or

pr ot oRol | Browser). You should specify an array containing one or more
views based on pr ot oRol | | t em Each item in the array represents one of
the views in the roll.

The pr ot oRol | I t emis based on a view of the class ¢l Vi ew

Note that the pr ot oRol | | t emproto is not used by picking it from the view
palette in NTK. You use this proto by writing a textual description of your
template, referring to this proto in the _pr ot o slot of your template frame.

Roll Protos 5-119

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

You write one template frame for each item to be shown in the roll, and
place them all in an array in the i t ens slot of the roll. See pr ot oRol | for an

example.

Slot descriptions
vi ewBounds

vi ewFor mat
vi ewdustify

overvi ew

hei ght
stepChil dren

5-120 Roll Protos

Typically, you set the bounds to 0, 0, 0, hei ght . The
first three bounds parameters are not needed because
the view is positioned below the previous child and
fully horizontally justified within the roll. However,
you can specify values other than zero to indent the
view from the sides of its parent or to separate it from
its preceding sibling, but keep in mind how the

vi ewdust i fy setting affects the interpretation of the
vi ewBounds values. For more information on the

vi ewdust i fy slot, see “View Alignment” (page 3-13)
in Newton Programmer’s Guide.

Optional. The default setting is vf Fi | | Whi te +
vf FrameBl ack + vfPen(1).

Optional. The default setting is vj Si bl i ngBot t onV
+ vj Parent Ful | H

A string that is the one-line overview to be displayed
for this view when the roll is collapsed and only the
overview list is shown.

Set to the height of the view, in pixels.

An array containing one or more child views that
belong to the view that is this particular roll item. These
are shown when this item is expanded (tapped by the
user, or scrolled to after the roll has already been
expanded). Typically, each child view uses a proto and
can include whatever slots are important for use with its
particular proto.

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

View Classes

The following view class is used to display an expandable text outline.

Outline View (clOutline)

The cl Qut | i ne view class is used to display an expandable text outline.
Figure 5-43 shows an example.

Figure 5-43 Example of an expandable text outline

My First Heading
First level 2 head
Another level 2 head
Wow—a third lewvel!
Second main heading
Third main heading

The cl Qut | i ne view class includes these features:

= Multilevel outline (up to 15 levels), with each outline level indented from
the previous one.

= Headings that can be expanded (those that contain subheadings) are
shown in bold automatically.

= Headings the user can expand to show subheadings by tapping the
heading. Another tap on the heading collapses it, hiding its subheadings.

= Only one main heading can be expanded at a time. If the user taps a
different heading, any other expanded heading is automatically collapsed,
and the new heading is expanded.

View Classes 5-121

5-122

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Slot descriptions
vi ewBounds

browsers

vi ewFont

vi ewFl ags

vi ewFor mat
cl i ckSound

OutlineClickScript

Set to the size and location where you want the view to

appear.
An array containing one frame item, Li st, which is
itself an array of the items to be shown in the outline.
Each outline item is a frame containing these slots:

| evel The outline level of this item. “1” specifies
a top-level heading, “2” specifies a
second-level heading, and so on. This slot
can be omitted for top-level items; it
defaults to level 1. You can use up to 15
levels.

name A string that is the text to be shown in the
outline. Tabs are not allowed in the text.

Specify the font to be used for the text in the outline. It's
best not to specify a bold font since bold is added
automatically for headings that have subheadings. If
you specify bold, all the text will be bold. The default
font is ROM f ont Syst enl0.

The default setting is vVi si bl e + vO i ckabl e +
VReadOnl y.

Optional. The default setting is ni | .

Optional. Specify a sound frame. This sound is played
when the user taps any item in the outline.

outline: Qut I i ned i ckScri pt (index, unused)

This method is called whenever the user taps an item in the outline. This
function must return non-ni | .

index

unused

View Classes

The index of the outline item in the Li st array (inside
the br owser s slot).

Unused.

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Here is an example of a view definition of the cl Qut | i ne class:

myQutline := {...
viewcl ass: cl Qutline,
vi ewFl ags: vVi si bl e+tvd i ckabl e+tvReadOnl y,
vi ewBounds: {left: 25, top: 56, right: 220,
bottom 232},
vi ewFont: ROM fontsysteml?2,
clickSound: ROMflip,
browsers: [{list: |

{level :1, name:"My First Heading"},
{level:2, name:"First level 2 head"},
{l evel : 2, nane:"Anot her |evel 2 head"},
{level : 3, name:"Ww-a third level!"},
{level : 1, nane:"Second mai n headi ng"},
{l evel : 2, nane:"Section 2 subhead 1"},
{l evel : 2, name:"Section 2 subheadl"},
{l'evel :1, nanme:"Third mai n heading"},
{l evel : 2, nane:"Last subhead"},

1},
QutlinedickScript: func(index, dummy)

begin

Print("You picked browser item" & index);
true;

end,

-1

Monthly Calendar View (clIMonthView)

The cl Mont hVi ewview class is used to display a monthly calendar.
Figure 5-44 shows an example of a monthly calendar view.

View Classes 5-123

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

Figure 5-44 Monthly calendar view

S M T W T F 5

1 2 3 45
& 7 S 01112
12141516 171819
20 2122 23 24 25 26
27 25 29 30 31

Selected days are highlighted with an inverted rounded rectangle. The
current day is shown in bold, if it appears in the month that is displayed.

Here is an example of a view definition of the cl Mont hVi ew class:

theMonth = {...
vi ewcl ass: cl Mont hVi ew,
vi ewBounds: {left: 58, top: 82, right: 186,
bottom 178},

vi ewf | ags: vVisi bl e+vC i ckabl e,

| abel Font: ROM font Syst enBBol d,

dat esFont: ROM font Syst enD,

sel ectedDates: nil,

Vi ewSet upFor nScri pt: func()
begi n
sel f.sel ectedDates := [Time()];
end,

-}

These slots are of interest for a view of the cl Mont hVi ewclass:

Slot descriptions
vi ewBounds Set to the size and location where you want the view to
appear.

sel ectedDat es Required. Initially, this slot must be set to an array
containing a single element that is a time value. (For

5-124 View Classes

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

example, you can use the Ti ne function to return the
current time.) The month displayed is the month in
which this time value occurs. If the user makes a
selection of days in the month, this slot holds an array
of time values, one for each of the days selected. All
time values are represented as the number of minutes
passed since midnight, January 1, 1904.

year A read-only slot that holds an integer that is the year of
the month shown.

nmont h A read-only slot that holds an integer that is the number
of the month shown (January=1, . . ., December=12).

vi ewFl ags The default setting is vVi si bl e+vCl i ckabl e.

vi ewFor mat Optional. The default setting is ni | .

dat esFont Optional. The font used for the day numbers. The

current day’s date is shown in bold. The default font is
ROM f ont Syst enB.

| abel Font Optional. The font used to label the days above the
dates. If you omit this slot or set it to ni | , the day
labels are not shown. The default font from NTK is
ROM f ont Syst enBBol d.

noSel ecti on Optional. You should set this slot to t r ue if you do not
want the initial date highlighted (selected) when the
month view is first displayed. The defaultis ni | .

si ngl eDay Optional. You should set this slot to t r ue to force
single-day selection only (in which the user cannot
select multiple days). The default is ni | , meaning that
multiple day selection is allowed.

Typically, the sel ect edDat es slot resides in the parent view of the month
view and is found through inheritance when the month view is instantiated.
This allows the parent and its other child views to have access to the date
selection from the month view.

The following methods are of interest in cl Mont hVi ew

View Classes 5-125

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

MonthChangedScript

monthView: Mont hChangedScri pt ()
Called when the date selection changes.

This method lets you take an action when the date selection changes. The
new selected dates are stored in an array in the sel ect edDat es slot.

The return value of this method is ignored.

ViewSetupFormScript

monthView: Vi ewSet upFor nScri pt ()

Called before the month view is opened.

This method is set by default in NTK to the following line of code:
self.sel ectedDates := [Tinme()];

This code causes the view to display the current month when it is opened.

Pop-up Functions and Methods

5-126

The following functions and methods are used in creating pop-up views.

PopupMenu

view: PopupMenu(pickltems, options)

Creates a dynamic pop-up list view, or picker, from which one item can be
selected.

PopupMenu returns the picker view that it creates.

pickltems An array of items that you want to appear in the picker
list. The elements in the array appear with the first item
at the top of the list, continuing down to the last item. If
the list contains more items than can be shown on the
screen at one time, the user can scroll it to see more

Pop-up Functions and Methods

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

items. For more details on the items you can specify in
the picker list, see the section “Specifying the List of
Items for a Popup” (page 6-37) in Newton Programmer’s
Guide.

Often this is simply an array of strings to appear in the
list.

If you list items that include icons, be aware that
PopupMenu scales the items to the maximum of the icon
height and text height. You can force this to a desired
value (for all items, except separators) by adding this
option slot to the first item:

vi ew. PopupMenu([{item "first one", fixedheight:
22}...)

If you use icons in a list that can become large enough to
scroll, you should specify the f i xedHei ght slot for
every item.

If you find the indentation and placement of your icons
and text are ragged, you can provide an indent slot for
the first item, which forces every item to be indented
correctly; for example:

vi ew. PopupMenu([{item "first one", indent: 28}...)

To insert a light or dark separator line between two
items, place ' pi cksepar at or or
' pi cksol i dsepar at or in the item list.

To add a nonpickable item or place a mark next to an
item, specify the item as a frame containing the
following slots:

item The item string.

pi ckabl e Specify non-ni | if you want the item to
be pickable, or ni | for not pickable.
Nonpickable items appear in the list but
are not highlighted and can’t be selected.

mar k A character to be displayed next to the
item. You can specify a character with

Pop-up Functions and Methods 5-127

5-128

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

either a dollar sign followed by the
character code ($\ uFCOB, for example,
produces the check mark symbol in the
Espy font) or one of the character
constants (kCheckMar kChar, for
example).

options A value that specifies where the pop-up menu appears.

There are a number of possible options. For button
pop-up views, specify ni | ; the pop-up view is placed
adjoining the view to which the PopupMenu message is
sent (not obscuring the button).

You can also specify a frame with two slots—I ef t and
t op—which define the top-left corner of the pop-up
view. The new view is placed relative to the view from
which PopupMenu is called (the parent). The left edge
of the new rectangle is inset | ef t pixels from the left
side of the parent, and the top edge is inset t op pixels
from the top edge of the parent.

You can also provide a' bounds slot that is a bounds
frame that specifies, in local coordinates, the rectangle
next to which the pop-up view should appear.

When an item in a picker is selected, the system sends the

Pi ckActi onScri pt message to the view identified by sel f (the view
from which PopupMenu was called). You must define Pi ckAct i onScri pt
as a method that accepts one parameter. The parameter passed to

Pi ckActi onScri pt is the array index of the item number selected in the
list (the first item has an index of zero).

If no item is selected—that is, if the user taps outside the picker to close it—
the Pi ckCancel | edScri pt message is sent to the view identified by sel f .
If you want to handle this message, define a method that accepts no
parameters, since none is passed.

Set | t emVar k and Get | t emMar k are two methods provided for picker
views. You can use them within the Pi ckAct i onScri pt method (or

Pop-up Functions and Methods

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

elsewhere) to set and get the mark for an item. You call these methods as
follows:

popupView: Set | t envar k()
popupView: CGet | t enmivar k()

where popupView is the view returned by the PopupMenu method. For
details on these methods, see pr ot oPi cker.

The picker view created by PopupMenu is automatically closed after the user
selects an item or taps outside the view.

Name Reference Functions

The following global routines are provided for working with name
references.

IsNameRef
I sNaneRef (item)

This function returns non-ni | if the specified item is a name reference (as
determined by the presence of an _al i as slot).

AliasFromObj
Al i asFr ontbj (item)

This function returns an alias, if possible. If the item is an alias, it is simply
returned. If the item is a soup entry, an alias to it is created and returned. If
the entry is a name reference, the alias to its entry is returned. In all other
cases, ni | is returned.

EntryFromObj
Ent r yFr ontbj (item)

This function returns an entry if possible. Basically, it looks for an entry alias
and then tries to resolve the entry from it.

Pop-up Functions and Methods 5-129

CHAPTER 5

Pickers, Pop-up Views, and Overviews Reference

ObjEntryClass

Ooj Ent ryd ass(item)

This function returns the class of the entry returned by the Ent r yFr onObj
function.

5-130 Pop-up Functions and Methods

CHAPTETR 6

Controls Reference

This chapter provides reference information for the control protos that you
can use in your applications. You use the control protos to provide various
user interface and view enhancement features in your applications. This
chapter describes the following controls and other protos:

horizontal and vertical scrollers
boxes and buttons

alphabetical selection tabs
gauges and sliders

time-setting displays

special views

view appearance enhancements

status bars

CHAPTER 6

Controls Reference

Scroller Protos

6-2

Scrollers allow the user to move vertically or horizontally through a display
that is bigger than the view. The Newton System Software provides a
number of scrollers that allow users to scroll their views.

For an overview of using the scroller protos in your applications and a
description of how to implement a simple scroller, see “Scroller Protos”
(page 7-2) in Newton Programmer’s Guide.

protoHorizontal2DScroller

This proto is used to include both left/right and up/down scrollers, centered
at the bottom of a view. Note that most units are expressed in terms of
scrollable items (cells, lines, and so on) rather than pixels. The following
figure shows the possible scrolling directions.

=TT

The vi ewBounds and vi ewdust i f y slots of

prot oHor i zont al 2DScr ol | er are set up to center the scroller in its
parent view. Change these slots only if you want the scroller in a different
location.

Slot descriptions

scrol | View Optional. Messages are sent to this view; the default is
the template. You usually set this slot in the
Vi ewSet upFor mscript.

scrol | Rect Optional. Extent of scrollable area, in units to scroll
(lines, pixels, and so on).
dat aRect Optional. Extent of data in the view. This is often the

same value as scr ol | Rect .
vi ewRect Optional. Extent of visible area.

Scroller Protos

CHAPTER 6

Controls Reference

scrol | Amounts Optional. An array of three numbers passed to you for
scrolling: [line, page, double-tap]. The defaultis [1, 1, 1].

pageThreshol d Optional. The number of lines scrolled before scrolling
in pages; the default is 5.

The following slots represent the current offset from the scrollable area. For

example, if you scroll to the right, xPos is a positive value.

xPos Current horizontal coordinate in the scr ol | Rect .

yPos Current vertical coordinate in the scr ol | Rect .

The pr ot oHor i zont al 2DScr ol | er scroll arrows are handled for you,

provided you specify scr ol | Rect, dat aRect, and vi ewRect correctly. If

you want to get and set the arrows state, though, you can use the Get Ar r ow
and Set Ar r owmethods, described on page 6-4.

ViewScroll2DScript

ScrollView: Vi ewScr ol | 2DScr i pt (direction, extras)
Is called when the user taps the scroll arrows. This method is required.

direction A symbol indicating the direction to scroll. Use one of
the following values: ' | eft ,' ri ght," up, or' down.
extras A frame with the following slots:
count The number of calls to this method.
anount The amount scrolled in scr ol | Rect .

axi s The axis of scrolling, which is either
"horizontal or'vertical.

uni t The units in which to scroll.

While the pen is held down, the extras frame

information is reused. This lets you attach state-specific

slots to the extras frame, which you can reference in

subsequent calls to this method.

Note

You usually call Ref r eshVi ews in your
Vi ewScr ol | 2DScr i pt, which forces the view
to redraw while the user has the pen down. O

Scroller Protos 6-3

CHAPTER 6

Controls Reference

ViewScrollDoneScript

scroller: Vi ewScr ol | DoneScri pt ()
Is called after the user lifts the pen.

SetArrow

scroller: Set Ar r ow(direction, state)

Is called when the user taps the scroll arrows. Sets the feedback state of an
arrow.

direction A symbol indicating the arrow to change. Use one of the
following values: ' | eft ,' ri ght," up, or' down.

state A symbol indicating the state of the arrow; use one of
the following values: ' normal ,' more,or' hilite.

A WARNING

Do not set the scr ol | Rect, vi ewRect , or dat aRect slots
in your Set Ar r owmethod. If you do, your changes can
conflict with changes that the scroller proto is making. a

GetArrow

scroller: Get Ar r ow(direction)

Returns the current state of the arrow direction.

direction A symbol indicating the direction to scroll. Use one of
the following: ' | eft, "' ri ght,' up, or' down.

A WARNING

Do not set the scr ol | Rect, vi ewRect, or dat aRect slots
in your Get Ar r owmethod. If you do, your changes can
conflict with changes that the scroller proto is making. a

Scroller Protos

CHAPTER 6

Controls Reference

protoLeftRightScroller

This proto is used to include left/right scrollers, which are centered at the
bottom of a view. The following is an example of a
protoLeft R ght Scrol | er view:

*I

The vi ewBounds and vi ewJust i f y slots of pr ot oLef t Ri ght Scrol | er
are set up to center the scroller on the bottom edge of its parent view. Change
these slots only if you want the scroller in a different location.

The slots and methods of pr ot oLef t Ri ght Scr ol | er are the same as those
of prot oHor i zont al 2DScr ol | er. For their descriptions, see
“protoHorizontal2DScroller” (page 6-2).

protoUpDownScroller

This proto is used to include up/down scrollers, centered at the right side of
a view. The following is an example of a pr ot oUpDownScr ol | er view:

I

F,
[

The vi ewBounds and vi ewdust i fy slots of pr ot oUpDownScr ol | er are
automatically computed to center the scroller at the right of the view.

The slots and methods of pr ot oUpDownScr ol | er are the same as those of
pr ot oHor i zont al 2DScr ol | er. For their descriptions, see
“protoHorizontal2DScroller” (page 6-2).

Scroller Protos 6-5

CHAPTER 6

Controls Reference

protoHorizontalUpDownScroller

This proto is used to include horizontal up/down scrollers, centered at the
right side of a view. The following is an example of a
pr ot oHori zont al UpDownScr ol | er view:

&L

The pr ot oHor i zont al UpDownScr ol | er automatically centers itself at the
bottom of the view; the vi enBounds and vi ewJust i fy slots are set up for
you.

The slots and methods of pr ot oHor i zont al UpDownScr ol | er are the
same as those of pr ot oHor i zont al 2DScr ol | er. For their descriptions,
see “protoHorizontal2DScroller” (page 6-2).

Button and Box Protos

6-6

You use the protos described in this section to display text and picture
buttons, checkboxes, and radio buttons. The Newton System Software
provides a variety of button and box types for use in your applications. Each
of these protos uses specific methods to control its behavior, as described in
the description of each proto in this section.

For an overview of using the button and box protos in your applications and
a description of how to implement a simple button, see “Button and Box
Protos” (page 7-6) in Newton Programmer’s Guide.

Button and Box Protos

CHAPTER 6

Controls Reference

protoTextButton

This proto is used to create a rounded rectangle button with text inside it.
The text is centered vertically and horizontally within the rectangle. The
following is an example of a pr ot oText But t on view:

My Button

The Vi ewd i ckScri pt method is used internally in the

pr ot oText But t on and should not be overridden. To handle a tap event,
use the But t ond i ckScri pt method; the Vi ewCl i ckScri pt method
sends the But t onCl i ckScri pt message to allow you to handle the event.

Note

Inking is automatically turned off when the button

is tapped. O

The pr ot oText But t on is based on a lightweight paragraph view, as
described in “Lightweight Paragraph Views” (page 8-11) in Newton
Programmer’s Guide.

Slot descriptions

vi ewBounds Set to the size and location where you want the button
to appear.

vi ewFl ags The default setting is vVi si bl e + vReadOnly +
vQ i ckabl e.

t ext A string that is the text inside the button.

vi ewFont Optional. The default font for the text is
ROM f ont Syst enBBol d.

vi ewFor mat Optional. The default setting is vf Fi | | Whi te +
vf FranmeBl ack + vfPen(2) + vfRound(4).

viewJustify Optional. The default setting is vj Cent er H +

vj CenterV + oneLi neOnl y. To make a button with

Button and Box Protos 6-7

6-8

CHAPTER 6

Controls Reference

multiple text lines, instead of oneLi neOnl y, use the
noLi neLi mi t s flag.

vi ewTr ansf er Mode
Optional. The default transfer mode is nodeCOr.

The following is an example of a template that uses pr ot oText But t on.
This example prints “ouch” in the Inspector window when the user taps the
button:

aButton : = {...
_proto: pr ot oText But t on,
text: "My Button",

Buttond ickScript: func()
Print("ouch!");

/1 a handy way to fit a button around a string
Vi ewSet upFor nScri pt: func()
vi ewbounds : = Rel Bounds(150, 60,
StdButtonWdt h(sel f.text), 13);

ButtonClickScript

button: But t onCl i ckScri pt ()

Is called when the button is tapped. The value returned by
Butt ond i ckScri pt isignored.

ButtonPressedScript

button: But t onPr essedScri pt ()

Is called repeatedly as long as the button is pressed (while the pen is held
down within it). The value returned by But t onPr essedScri pt is ignored.

Button and Box Protos

CHAPTER 6

Controls Reference

protoPictureButton

This proto is used to create a picture that is a button; that is, the user can tap
the picture to cause an action to occur. The following is an example of a
prot oPi ct ur eButt on view:

@Ihﬂﬂamﬂun Caodh

The Vi ewd i ckScri pt method is used internally in the

pr ot oPi ct ur eBut t on and should not be overridden. To handle a tap
event, use the But t onCl i ckScri pt method; the Vi end i ckScri pt
method sends the But t onCl i ckScri pt message to allow you to handle the
event.

Note

Inking is automatically turned off when the button
is tapped. O

The pr ot oPi ct ur eBut t on is based on a view of the ¢l Pi ct ur eVi ew
class.

Slot descriptions

vi ewBounds Set to the size and location where you want the button
to appear.

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vQ i ckabl e.

icon The bitmap to be used as the button.

vi ewFor mat Optional. The default setting is vf Fi | | Wi te +

vf FrameBl ack + vfPen(2) + vfRound(4).(The
examples in the picture above have vi ewFor mat set to
zero.)

viewJustify Optional. The default setting is vj Center H +
vj Center V.

The following is an example of a template that uses pr ot oPi ct ur eBut t on:

Button and Box Protos 6-9

6-10

CHAPTER 6

Controls Reference

pictButton := {...

_proto: pr ot oPi ct ureButton,

i con: nanesBi t map,

vi ewBounds: SetBounds(2, 8, 34, 40),

Buttond i ckScript: func()
cardfile: Toggl e()
-}

ButtonClickScript

button: But t onCl i ckScri pt ()

Is called when the button is tapped. The value returned by
But t onCl i ckScri pt is ignored.

ButtonPressedScript

button: But t onPr essedScri pt ()

Is called repeatedly as long as the button is pressed (while the pen is held
down within it). The value returned by But t onPr essedScri pt is ignored.

protolnfoButton

This proto is used to include the information button in a view. Tapping the
information button displays a picker containing information items, which
include About, Help, and Prefs. The user can tap one of these items to see
more information.

The following views show the information button with and without its
picker view displayed:

G

Button and Box Protos

CHAPTER 6

Controls Reference

The Vi ewd i ckScri pt, Vi ewQui t Scri pt, Pi ckActi onScri pt, and
Pi ckCancel | edScri pt methods are used internally in the
pr ot ol nf oBut t on and should not be overridden.

The pr ot ol nf oBut t on uses the pr ot oPi ct ur eBut t on as its proto.

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vd i ckabl e.
vi ewBounds Optional. Set to the size and location where you want

the information button to appear. If you do not set this
slot, the information button appears five pixels to the
right of its sibling in a 13x13 view. It is designed to be
placed next to another button, for example in the status
bar.

vi ewJustify Optional. The default setting is vj Parent Left H +
vj Parent TopV + vj SiblingR ghtH +
vj Si bl i ngTopV + vj CenterH + vj CenterV.
DolnfoAbout
button: Dol nf oAbout ()

Is sent to the information button view if the user selects the About menu
item. The value returned by Dol nf oAbout is ignored.

Note
The information button picker only displays the About item
if you provide the Dol nf oAbout method. O

DolnfoHelp

button: Dol nf oHel p()

Is sent to the information button view if the user selects the Help menu item.
The value returned by Dol nf oHel p is ignored.

Button and Box Protos 6-11

6-12

CHAPTER 6

Controls Reference

Note

The information button picker only displays the Help item if
you provide the Dol nf oHel p method. O

The Newton System Software also provides a number of functions for
displaying help books. The Showvanual function, which is described in
Chapter 26, “Utility Functions,” displays the system Help book. The
OpenHel pTo, OpenHel pBook, and OpenHel pBookTo display help books;
these functions are described in the Newton Book Maker User*s Guide.

DolInfoPrefs

button: Dol nf oPr ef s()

Is sent to the information button view if the user selects the Prefs menu item.
The value returned by Dol nf oPr ef s is ignored.

Note
The information button picker only displays the Prefs item if

you provide the Dol nf oPr ef s method. O

GenlInfoAuxltems

button: Genl nf oAuxl t ens()

Returns an array of items to display in the information button picker. You
override this method to define the items you want to appear in the
information button picker (the auxilliary items). For more information about
the array that you return from this method, see “protoPicker” (page 5-13).

DolnfoAux

button: Dol nf oAux(items, index)

Is sent to the information button view if the user selects one of the auxiliary
items defined by your Genl nf oAux| t ens method.

items The array of auxiliary items returned by the
Genl nf oAux| t ems method.

index The index of the selected item in the items array.

Button and Box Protos

CHAPTER 6

Controls Reference

protoOrientation

This proto is available on Newton platforms that support changing the
screen orientation so that data on the screen can be displayed facing different
ways.

The appearance and operation of this proto varies depending on the type of
Newton ROM. On Newton devices with two available orientations—
landscape and portrait—this proto presents a pr ot oText But t on with the
label “Rotate,” which lets the user change between the two modes. On other
devices it presents a pr ot oPopupBut t on offering a list of possible
orientations.

If you override the default vi ewBounds or vi ewdust i f y values, you
should check the prot oOri ent ati on. vi enBounds value in your

Vi ewSet upFor nScr i pt method to ensure that the height and width are
correct.

When the user changes the orientation, the scr eenOri ent at i on slot of the
user configuration that is maintained by the Newton System Software is
updated with the selected orientation. In addition, the ReOr i ent ToScr een
message is sent to all children of the root view; this message is described in
“Views” (page 3-1).

Note that the But t onCl i ckScri pt method is used internally in the
prot oOri ent at i on and should not be overridden.

The prot oOri ent at i on uses the pr ot oText But t on (page 6-7) as its
proto.

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vQ i ckabl e.

vi ewBounds Set to the size and location where you want the
orientation button to appear.

vi ewJustify Optional. The default setting is vj Center H +

vj Parent Bott onV + vj Par ent Cent er H.

Button and Box Protos 6-13

6-14

CHAPTER 6

Controls Reference

protoRadioCluster

This proto is used to group a series of radio buttons into a cluster where only
one can be “on” at a time. You must add the individual radio buttons as child
views to the radio cluster view.

There is no visual representation of a pr ot oRadi oCl ust er view by itself. It
serves only as a container for child views based on pr ot oRadi oBut t on or
pr ot oPi ct Radi oBut t on. See pr ot oRadi oBut t on (page 6-16) for an
example of what this proto looks like.

The pr ot oRadi oQ ust er is based on a view of the cl Vi ewclass. The
proto itself has no child views; instead, you add individual buttons to the
cluster as child views. You can add these buttons, which use either

pr ot oRadi oBut t on (page 6-16) or pr ot oPi ct Radi oBut t on (page 6-18),
by moving the buttons into the cluster.

Slot descriptions
vi ewBounds Set to the size and location where you want the radio
button cluster to appear.

clusterValue Optional. You can specify which button is initially
selected by storing its but t onVal ue in this slot. During
execution, this slot holds the current value of the radio
button cluster by storing the but t onVal ue of the
selected radio button. The default initial value is ni |
(no button selected).

The following is an example of a template that uses pr ot oRadi oCl ust er
and three radio buttons based on pr ot oRadi oBut t on (page 6-16):

text FaceCl uster := {...
_proto: pr ot oRadi od ust er,
vi ewBounds: Set Bounds(70, 17, 130, 77),
Vi ewSet upFor nScri pt: func()
font Frame : = Get User Config(' userFont);

clusterValue := fontFrane. face;
Cl ust er Changed: func()
font Frame. face : = cl uster Val ue;

Button and Box Protos

CHAPTER 6

Controls Reference

Set User Confi g(' user Font Face, fontFrane),

-}
childl :={
_proto: pr ot oRadi oBut t on,
vi ewBounds: SetBounds(0, 0, 60, 20),
text: "Bol d",
but t onVal ue: ' bol d
-}
child2 :={...
_proto: pr ot oRadi oBut t on,
vi ewBounds: Set Bounds(0, 20, 60, 40),
text: "Underl i ne",
but t onVal ue: ' underl i ne
-}
child3 :={...
_proto: pr ot oRadi oBut t on,
vi ewBounds: Set Bounds(0, 40, 60, 60),
t ext: "Plain",
but t onVal ue: ' plain
-}

InitClusterValue

cluster: | ni t Cl ust er Val ue(buttonValue)

Initializes a radio button cluster. You can pass a button value to set a
particular button, or ni | to initialize the cluster with no buttons set. This
method does not send the Cl ust er Changed method.

buttonValue The button value, or ni | for no buttons set.

Button and Box Protos 6-15

6-16

CHAPTER 6

Controls Reference

ViewSetupFormScript

cluster: Vi ewSet upFor nscri pt ()

Sets an initially selected item, the value of which has been calculated at run
time. You calculate the value and then set ¢l ust er Val ue from within this
method.

ClusterChanged

cluster: Cl ust er Changed()

Is called whenever the value of the radio cluster changes (that is, when a
different radio button is “turned on”) to allow you to perform any necessary
processing. The value returned by O ust er Changed is ignored.

SetClusterValue

cluster: Set Cl ust er Val ue(buttonValue)

Programmatically changes the selected radio button in a cluster. This
method performs several tasks, including giving the user “undo” capability
for the change, updating the screen appropriately, and calling the

Cl ust er Changed method.

buttonValue The button value of the button you want to change.

protoRadioButton

This proto creates a radio button child view of a radio button cluster. Radio
button clusters are described in “protoRadioCluster” (page 6-14). A radio
button is a small oval bitmap that is either empty or contains a solid

Button and Box Protos

CHAPTER 6

Controls Reference

bull’s-eye when it is selected. It is labeled to the right with a text label, as
shown in the following view:

ix9pt

fi0pt
iizZpt
i 14pt

The following methods are defined internally: Vi ewSet upDoneScr i pt,
Vi ewCl i ckScri pt, and Radi oCl i ckScri pt. If you need to use one of
these methods, you must call the inherited method also (for example,

i nherited: ?Vi ewSet upDoneScri pt ()).

Note

Inking is automatically turned off when the button

is tapped. O

The pr ot oRadi oBut t on uses pr ot oCheckbox as its proto. For more
information, see “protoCheckbox” (page 6-24).

IMPORTANT

A radio button based on pr ot oRadi oBut t on must be a
child view of a view based on pr ot oRadi od ust er. You
cannot create stand-alone buttons with this proto. a

Slot descriptions

vi ewBounds Set to the size and location where you want the radio
button to appear.
vi ewFor mat Optional. The default setting is vf None. You usually do

not want any frame or fill because the radio button
provides all the required visual information.

t ext A string that is the radio button text label.

but t onVal ue The value of the cluster view when this radio button is
selected. Each button in the cluster should have a
unique but t onVal ue. When this button is selected,

Button and Box Protos 6-17

6-18

CHAPTER 6

Controls Reference

this value is stored in the ¢l ust er Val ue slot of the
parent radio button cluster.

You should use a symbol or immediate for this value,
since strings and other structured objects may fail the
equivalence test (because internal comparisons are
based on pointer equality, not content equality).

vi ewval ue The current value of the radio button. When the button
is unselected, this is set to ni | . When the button is
selected, this is set to the value in but t onVal ue.

This slot is initialized to ni | . If you want this button to
be initially selected, set vi ewVal ue to but t onVal ue.

protoPictRadioButton

This proto is used to create a picture radio button child view of a radio
button cluster. Radio button clusters are described in “protoRadioCluster”
(page 6-14). A picture radio button is a small boxed view that contains a
picture. You typically place several of these in a horizontal or vertical row,
from which the user chooses one. The following is an example of a vertical
picture radio button cluster view:

|
O

The following methods are defined internally: Vi ewCl i ckScri pt and
Updat eBi t map. If you need to use one of these methods, you must call the
inherited method also (for example, i nheri t ed: ?Vi ewCl i ckScri pt()).

The pr ot oPi ct Radi oBut t on uses pr ot oPi ct ur eBut t on as its proto.
For more information, see “protoPictureButton” (page 6-9).

Button and Box Protos

CHAPTER 6

Controls Reference

IMPORTANT

A radio button based on pr ot oPi ¢t Radi oBut t on must be
a child view of a view based on pr ot oRadi oCl ust er. You
cannot create standalone picture buttons with this proto. a

Slot descriptions

vi ewBounds Set to the size and location where you want the picture
radio button to appear.
vi ewFor mat Optional. The default setting isvf Fi | | White +

vf FranmeBl ack + vfPen(2) + vfRound(4).To
simply frame the view, as shown in the example
illustration, use this setting: vf Fi | | White +

vf FranmeBl ack + vfPen(1).

viewJustify Optional. The default setting is vj Cent er H +
vj Center V.
icon The bitmap to be used as the button picture.
but t onVal ue The value of the cluster view when this picture radio

button is selected. Each button in the cluster should
have a unique but t onVal ue. When this button is
selected, this value is stored in the cl ust er Val ue slot
of the parent radio button cluster.

You should use a symbol for this value, since strings
and other structured objects may fail the equivalence
test (because internal comparisons are based on pointer
equality, not content equality).

vi ewval ue The current value of the radio button. When the button
is unselected, this is set to ni | . When the button is
selected, this is set to the value in but t onVal ue.

This slot is initialized to ni | . If you want this button to
be initially selected, set vi ewVal ue to but t onVal ue.

Button and Box Protos 6-19

CHAPTER 6

Controls Reference

ViewDrawScript

button: Vi ewDr awScri pt ()

Highlights the radio button when the button is selected. You must supply
this method. One style of highlighting is to draw an inner black border, as
shown in the following example:

pictRadio := {...
_proto: pr ot oPi ct Radi oBut t on,
/1 override frame
vi ewFormat ;. vf Fi || Wite+vfFraneBl ack+vf Pen(1),
i con: nyPi ct,
but t onVal ue: 3,
Vi ewDr awScri pt: func()
begi n /1 if button is selected then highlight it
i f viewval ue then
: Dr awShape(MakeRect (0, 0, 15, 15), nil);
end,

-}

protoCloseBox

This proto allows the user to close the view. This is the close box that you
commonly see in views on the Newton screen. When the user taps the close
box, the view is closed. The following is an example of a pr ot o0l oseBox:

E3

Note

The pr ot 0Cl oseBox and pr ot oLar geCl oseBox are
similar, with two differences: 1) pr ot oCl oseBox is a
slightly smaller icon, and 2) the frame for pr ot oCl oseBox
is part of the bitmap. O

6-20 Button and Box Protos

CHAPTER 6

Controls Reference

The pr ot oCl oseBox uses pr ot oPi ct ur eBut t on as its proto. For more
information, see “protoPictureButton” (page 6-9).

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vQ i ckabl e.
vi ewBounds Set to the size and location where you want the close

box to appear. If you do not set this slot, the close box
defaults to the lower-right corner of its instantiator’s
view. (The bitmap is placed at -14, -14 from the lower-
right corner.)

vi ewdustify Optional. The default setting is vj Par ent Bot t onV +
vj Par ent Ri ght H.
vi ewFor mat Optional. The default setting is vf None. Typically you

don’t use any frame or fill since the close box picture
provides the visual content.

IMPORTANT

The view that is to be closed by the close box must contain
the following slot:

declareSel f: ' base
This is usually the application base view. a

The following is an example of a template that uses pr ot oCl oseBox:

printerPicker :={...
decl areSel f: ' base,

-}

child :={... [/ child of printPicker
_proto: protoC oseBox,

Buttond ickScript: func()
begin
:cl oseNet wor k() ;
i nherited: ?ButtonC i ckScript();

Button and Box Protos 6-21

CHAPTER 6

Controls Reference

end,

-}

ButtonClickScript

box: But t onC i ckScri pt ()

Sends the Cl 0se message to the view identified as base. You need to
redefine this method if you want to perform additional operations before the
view is closed. For example, you might need to close down a
communications connection when the view is closed.

If you do redefine this method, you must call the inherited method by
sending the message i nheri t ed: ?Butt onCl i ckScri pt ().

protoLargeCloseBox

This proto is a picture button that contains an “X” icon that allows the user to
close the view. When the user taps the icon, the view is closed. The following
is an example of a pr ot oLar geCl oseBox view:

O X}

Note

The pr ot oLar ged oseBox and pr ot o0 oseBox

(page 6-20) are very similar, with two differences: 1)

pr ot oLar ged oseBox is a slightly larger icon, and 2) the
frame for pr ot oLar ged oseBox is not part of the bitmap,
but is controlled by the vi ewFor mat flags. O

The pr ot oLar geCl oseBox uses pr ot oPi ct ur eBut t on as its proto. For
more information, see “protoPictureButton” (page 6-9).

6-22 Button and Box Protos

CHAPTER 6

Controls Reference

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vC i ckabl e.
vi ewBounds Set to the size and location where you want the close

button to appear. If you do not set this slot, the close
button defaults to the lower-right corner of its
instantiator’s view. (The bitmap is placed at -18, -18
from the lower-right corner.)

vi ewJustify Optional. The default setting is vj Par ent Bot t onV +
vj Parent Ri ghtH + vj CenterH + vj CenterV.
vi ewFor mat Optional. The default setting is vf Fi | | White +

vf FraneBl ack + vfPen(2) + vfRound(4).

IMPORTANT
The view that is to be closed by the close box must contain
the following slot:

decl areSel f: ' base
This is usually the application base view. a

The following is an example of a template that uses pr ot oLar geC oseBox:
closer :={...

_proto: protolLargeC oseBox,
/1 no need to define anything el se

-}

ButtonClickScript
box: Butt ond i ckScri pt ()

Sends the Cl ose message to the view identified as base. You need to
redefine this method if you want to perform additional operations before the
view is closed. For example, you might need to close down a
communications connection when the view is closed.

If you do redefine this method, you must call the inherited method by
sending the message i nherit ed: ?ButtonCl i ckScri pt ().

Button and Box Protos 6-23

6-24

CHAPTER 6

Controls Reference

protoCheckbox

This proto is used to create a checkbox, which is a small dotted box that can
include a check mark. Each checkbox is labeled to the right with a text label.
When the user taps the checkbox, a check is drawn in it. If the user taps a
checked box, the check is removed. The following is an example of a
checkbox view:

B Use System Yolume

The following methods are defined internally: Vi ewSet upDoneScr i pt,
Vi ewC i ckScri pt, Vi emChangedScri pt, and Updat eBi t nap. If you
need to use one of these methods, you must call the inherited method also
(for example, i nheri t ed: ?Vi enwSet upDoneScri pt ()).

Note
Inking is automatically turned off when the checkbox
is tapped. O

The pr ot oCheckbox implements the checkbox icon portion of the proto. It
has one child view, a lightweight paragraph view that implements the text
label portion of the proto. Lightweight paragraph views are described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer’s Guide.

The pr ot oCheckbox is based on the pr ot oCheckBox| con internal proto,
which is based on a view of the cl Pi ct ur eVi ewclass. The

pr ot oCheckBox| con identifies itself as the base view (decl ar eSel f:

' base).

Button and Box Protos

CHAPTER 6

Controls Reference

Slot descriptions

vi ewBounds Set to the size and location where you want the
checkbox to appear.
vi ewFor mat Optional. The default setting is vf None. You don’t

typically use any frame or fill since the checkbox
provides all the necessary visual content.

vi ewFont Optional. The default font for the text label is
ROM f ont Syst en®.
t ext Asstring that is the checkbox text label.
but t onVal ue Optional. The value that you want for the view when

the checkbox is checked. The default value is non-ni | .

You should use a symbol or immediate value for this
value, since strings and other structured objects may fail
the equivalence test (because internal comparisons are
based on pointer equality, not content equality).

vi ewval ue The current value of the checkbox. When the button is
unchecked, this is set to ni | . When the button is
selected, this is set to the value in but t onVal ue.

The following is an example of a template that uses pr ot oCheckBox:

notifier :={

_proto: pr ot oCheckBox,
Vi ewBounds: Set Bounds(40, 30, 200, 45),
but t onVal ue: true,
text: "Play Notify Sound"
-}
ValueChanged

checkBox: Val ueChanged()

Is called whenever the value of the checkbox changes, to allow you to do
additional processing. The value returned by Val ueChanged is ignored.

Button and Box Protos 6-25

CHAPTER 6

Controls Reference

ToggleCheck

checkBox: Toggl eCheck()

Programmatically toggles the check mark in the checkbox: if the check mark
was displayed, it is erased; if it was not shown, it is displayed. The checkbox
is redrawn appropriately. The Toggl eCheck method always returns

non-ni | .

protoRCheckbox

This proto creates a checkbox with label text to its left. This is exactly like

pr ot oCheckbox, except that the pr ot oRCheckbox places the checkbox to
the right of the text, and pr ot oCheckbox places the checkbox to the left of
the text. The following is an example of a pr ot oRCheckbox view:

Require dial tone (%

The following methods are defined internally: Vi ewSet upDoneScr i pt,
Vi ewC i ckScri pt, Vi emChangedScri pt, and Updat eBi t nap. If you
need to use one of these methods, you must call the inherited method also
(for example, i nheri t ed: ?Vi enwSet upDoneScri pt ()).

Note

Inking is automatically turned off when the checkbox
is tapped. O

The pr ot oRCheckbox implements the checkbox icon portion of the proto. It
has one child view, a lightweight paragraph view that implements the text
label portion of the proto. Lightweight paragraph views are described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer’s Guide.

The pr ot oRCheckbox is based on the pr ot oCheckBoxI con internal
proto, which is based on a view of the cl Pi ct ur eVi ewclass. The

pr ot oCheckBox| con identifies itself as the base view (decl ar eSel f:
' base).

The following is an example of a template that uses pr ot oRCheckBox:

6-26 Button and Box Protos

CHAPTER 6

Controls Reference

ri ght CheckVi ew : ={

_proto: pr ot oRCheckBox,

Vi ewBounds: Set Bounds(40, 30, 200, 45),

but t onVal ue: true,

text: "Ri ght Checkbox"

-}

Slot descriptions

vi ewBounds Set to the size and location where you want the
checkbox to appear.

vi ewFor mat Optional. The default setting is vf None. You don’t

typically use any frame or fill since the checkbox
provides all the necessary visual content.

vi ewfont Optional. The default font for the text label is
ROM f ont Syst enB.

t ext A string that is the checkbox text label.

i ndent Optional. The number of pixels to indent the checkbox
to the right of the text. The default indent is 16.

but t onVal ue Optional. The value that you want for the view when

the checkbox is checked. The default value is non-ni | .

You should use a symbol or immediate value for this
value, since strings and other structured objects may fail
the equivalence test (because internal comparisons are
based on pointer equality, not content equality).

vi ewval ue The current value of the checkbox. When the button is
unchecked, this is set to ni | . When the button is
selected, this is set to the value in but t onVal ue.

ValueChanged
checkBox: Val ueChanged()

Is called whenever the value of the checkbox changes, to allow you to do
additional processing. The value returned by Val ueChanged is ignored.

Button and Box Protos 6-27

CHAPTER 6

Controls Reference

ToggleCheck

checkBox: Toggl eCheck()

Programmatically toggles the check mark in the checkbox. If the check mark
was displayed, it is erased; if it was not shown, it is displayed. The checkbox
is redrawn appropriately. The Toggl eCheck method always returns

non-ni | .

Selection Tab Protos

6-28

You can use the protos described in this section to display alphabetic
selection tabs on the screen.

For an overview of using the selection tab protos in your applications, see
“Selection Tab Protos” (page 7-11) in Newton Programmer’s Guide.

protoAZTabs

This proto is used to include alphabetical tabs, arranged horizontally, in a
view. The following is an example of a pr ot 0AZTabs view:

(abjed]eflan] ii]k nnjop] ar] stjuviv]yv2)

PickLetterScript

tabs: Pi ckLet t er Scri pt (letter)

Is called when the user taps a tab.

letter The letter that was tapped.

The following example shows a pi ckLet t er Scri pt method:

Selection Tab Protos

CHAPTER 6

Controls Reference

pi ckLetterScript: func(thelLetter)
begi n
set Val ue(t heText,'text);
end

SetlLetter

tabs: Set Let t er (newLetter, val)

Sets which letter is the currently selected letter and updates the highlighting.
newLetter The letter to select and highlight.

val Must be ni | . Reserved for future use.

The following example shows a use of the Set Let t er method:

/1 set nyProtoAZTabs to the letter "C'
nmyPr ot oAZTabs: Set Letter ($c, nil);

protoAZVertTabs

This proto is used to include alphabetical tabs, arranged vertically, in a view.
The following is an example of a pr ot 0AZVer t Tabs view:

abc
def
ghi
ikl
nno

pqr
stu

Selection Tab Protos 6-29

CHAPTER 6

Controls Reference

PickLetterScript

tabs: Pi ckLet t er Scri pt (letter)
Is called when the user taps a tab.

letter The letter that was tapped.

SetlLetter

tabs: Set Let t er (newLetter, val)
Sets which letter is the currently selected letter and updates the highlighting.
newLetter The letter to select and highlight.

val Must be ni | . Reserved for future use.

Gauges and Slider Protos

You can use the slider protos described in this section to present a gauge
view that indicates the current progress in relation to the entire operation.

For an overview of using the slider protos in your applications and a
description of how to implement a simple slider, see “Gauge and Slider
Protos” (page 7-12) in Newton Programmer’s Guide.

clGaugeView

The cl GaugeVi ewclass is used to display objects that look like analog bar
gauges.

Note

Although the cl GaugeVi ewclass remains available for
compatibility purposes, you should use the pr ot oGauge
instead. See “protoGauge” (page 6-35) for more information
about pr ot oGauge. O

6-30 Gauges and Slider Protos

CHAPTER 6

Controls Reference

The following is an example of a cl GaugeVi ew view:
[TR

On interactive gauges, the end of the gauge indicator bar contains a small
diamond-shaped active area called a knob. The user can drag the knob to
move the indicator bar to a new position.

The following example is a view definition of the cl GaugeVi ewclass:

soundGauge : = {..
vi ewC ass: cl GaugeVi ew,
vi ewBounds: {left:80, top:20, right:180, bottom 28},
vi ewFl ags: vVisibl e+vC i ckabl e,
gaugeDrawLi m ts: true,

m nVal ue: 0, /1 must be an integer
maxVal ue: 11 /1 must be an integer
Vi ewSet upFor mScri pt: func()
sel f.viewal ue : = Get Vol une(),
vi ewChangedScri pt: func(slot, context)
begin

Set Vol une(vi ewal ue) ;
:SysBeep(); //play it so they can hear new | evel

end,
-}
Slot descriptions
vi ewBounds Set to the size and location where you want the view to
appear.
vi ewal ue Set this slot to give the gauge an initial value. If you

need to calculate the initial value at run time, set this
slot in your Vi ewSet upFor nScr i pt . This value must
be an integer between m nVal ue and maxVal ue,
inclusive. During execution, the vi ewval ue slot stores

Gauges and Slider Protos 6-31

6-32

CHAPTER 6

Controls Reference

the current gauge setting by interpolating between
m nVal ue and maxVal ue.

vi ewFl ags The default setting is vVi si bl e + vd i ckabl e. To
make a gauge that is read-only, set the vReadOnl y flag
(and not vd i ckabl e). For read-only gauges, the
diamond-shaped knob is not drawn on the gauge.

vi ewFor mat Optional. The default setting is ni | .

m nVal ue Optional. The minimum gauge value. This is the value
of vi ewval ue when the gauge reads fully to the left
side. The default is 0, which you can change if you wish.

maxVal ue Optional. The maximum gauge value. This is the value
of vi ewal ue when the gauge reads fully to the right
side. The default is 100, which you can change if you
wish.

gaugeDrawLi mits
Optional. The default is non-ni | , which displays the
gray background. If you set this slot to ni |, the gray
background is not displayed.

ViewChangedScript

view: Vi ewChangedScr i pt (slot, view)

Is called whenever the value of the gauge view changes. This method is
called repeatedly as the gauge knob is dragged. You can dynamically track
the changes the user is making to the gauge indicator by examining the value
of the vi ewVal ue slot in this method. The value returned by

Vi ewChangedScri pt is ignored.

slot The name of the slot that changed.

view The view.

ViewFinalChangeScript

view: Vi ewFi nal ChangeScr i pt (valueBefore, valueAfter)

Is called after the user lifts the pen from moving the gauge knob. If the user
moved the gauge but reset it to its original value, this method is not called.
The value returned by Vi ewFi nal ChangeScri pt is ignored.

Gauges and Slider Protos

CHAPTER 6

Controls Reference

valueBefore The initial vi ewMal ue of the gauge before it was
changed.

valueAfter The final vi ewval ue of the gauge after it was changed.

protoSlider

This proto is used to create a user-settable gauge view, which looks like an
analog bar gauge with a draggable diamond-shaped knob. The following is
an example of a pr ot 0S| i der view:

[TR

If you want to have a read-only gauge, use the pr ot oGauge instead of
prot oSl i der.

The following methods are defined internally: Vi ewChangedScri pt and
Vi ewFi nal ChangeScri pt. If you need to use one of these methods, be
sure to call the inherited method also (for example,

i nherited: ?Vi ewChangedScri pt ()).

A WARNING

You cannot dynamically change the value of the m nVal ue

and maxVal ue slots at run time, except within the

Vi ewSet upFor nScr i pt method. If you need to change the

value of these slots, you must close the view, change the

values, then reopen the view. a

The pr ot 0Sl i der uses the pr ot 0Gauge as its proto. For more information,
see “protoGauge” (page 6-35).

The following is an example of a template that uses pr ot oSl i der :
SoundSetter := {...
_proto: prot oSl i der,

vi ewBounds: Rel Bounds(12, -21, 65, 9),
vi ewdusti fy: vj Par ent Bot t onV,

Gauges and Slider Protos 6-33

6-34

CHAPTER 6

Controls Reference

maxVal ue: 4, /1 nmust be an integer

Vi ewSet upFor nScri pt: func()
sel f.viewval ue : = Get Vol une(),

ChangedSl i der: func()

begi n
Set Vol une(vi ewal ue) ;
- SysBeep() ;
end,
-}
Slot descriptions
vi ewBounds Set to the size and location where you want the gauge to
appear.
vi ewal ue Set this slot to give the gauge an initial value. If you

need to calculate the initial value at run time, set this
slot in your Vi ewSet upFor nScr i pt . This value must
be an integer between m nVal ue and maxVal ue,
inclusive. During execution, the vi ewval ue slot stores
the current gauge setting by interpolating between

m nVal ue and maxVal ue.

m nVal ue Optional. The minimum gauge value. This is the value
of vi ewval ue when the gauge reads fully to the left
side. The default is 0, which you can change if you wish.

maxVal ue Optional. The maximum gauge value. This is the value
of vi ewval ue when the gauge reads fully to the right
side. The default is 100, which you can change if you
wish.

gaugeDrawLimits
Optional. The default is non-ni | , which displays the
gray background. If you set this slot to ni |, the gray
background is not displayed.

Gauges and Slider Protos

CHAPTER 6

Controls Reference

ViewSetupFormsScript
slider: Vi ewSet upFor nScri pt ()

Allows you to perform any processing that is required before the view is
instantiated, including setting the initial value of the vi ewval ue slot. This
method is required; however, you can simply define it as ni | if you do not
need to perform any actions.

ChangedSlider
slider: ChangedsSl i der ()

Is called after the user lifts the pen from moving the slider knob. You can
access the current gauge setting in the vi ewVal ue slot. If the user moved
the gauge but reset it to its original value, this method is not called. This
method is required; however, you can simply define it as ni | if you do not
need to perform any actions. The value returned by ChangedsSl i der is
ignored.

TrackSlider
slider: TrackSl i der ()

Is called whenever the value of the vi ewVal ue slot changes. It is provided
so you can dynamically track the changes as the slider is moved and take
action based on the current value. The Tr ack Sl i der method is called
repeatedly as the gauge knob is dragged. The value returned by

TrackSl i der isignored.

protoGauge

You use this proto to create a read-only gauge view, which looks like an
analog bar gauge. The following is an example of a pr ot oGauge view:

If you want to let the user set the gauge, use the pr ot oSl i der.

Gauges and Slider Protos 6-35

6-36

CHAPTER 6

Controls Reference

Note that you cannot change the value of the m nVal ue and maxVal ue slots
at run time, except within the Vi ewSet upFor nScr i pt method. If you need
to change the value of these slots, you must close the view, change the
values, then reopen the view.

The pr ot 0Gauge is based on a view of the cl GaugeVi ewclass, which is
described in “clGaugeView” (page 6-30).

The following is an example of a template that uses pr ot oGauge:

Per cent Sol vedGauge := {...

_proto: pr ot oGauge,
vi ewBounds: Rel Bounds(157, -21, 55, 9),
vi ewdustify: vj Par ent Bot t onV,
nmaxVal ue: pr obl ensFr ane. nunber O Pr obl ens,
vi ewal ue: pr obl ensFr ane. nunber Sol ved,
Vi ewSet upFor mScri pt: func()
nil,
-}
Slot descriptions
vi ewBounds Set to the size and location where you want the gauge to
appear.
vi ewval ue Set this slot to give the gauge an initial value. If you

need to calculate the initial value at run time, set this
slot in your Vi ewSet upFor nScr i pt . This value must
be an integer between i nVal ue and maxVal ue,
inclusive. During execution, the vi ewval ue slot stores
the current gauge setting by interpolating between

m nVal ue and maxVal ue.

m nVal ue Optional. The minimum gauge value. This is the value
of vi ewval ue when the gauge reads fully to the left
side. The default is 0, which you can change if you wish.

maxVal ue Optional. The maximum gauge value. This is the value
of vi ewval ue when the gauge reads fully to the right

Gauges and Slider Protos

CHAPTER 6

Controls Reference

side. The default is 100, which you can change if you
wish.

gaugeDrawLi mi ts
Optional. The default is non-ni |, which displays the
gray background. If you set this to ni | , the gray
background is not displayed.

ViewSetupFormsScript

gauge: Vi ewSet upFor nScri pt ()

Allows you to perform any processing that is required before the view is
instantiated, including setting the initial value of the vi ewval ue slot. This
method is required; however, you can simply define it as ni | if you do not
need to perform any actions.

protoLabeledBatteryGauge

This proto is used to create a read-only gauge view that graphically shows
the amount of power remaining in the system battery. The gauge is updated
every 10 seconds. If the Newton is plugged in and the battery is charging, a
charging symbol appears instead of the gauge. The following is an example
of a prot oLabel edBat t er yGauge view:

 IENEENS e
Battery _harging

The following methods are defined internally: Vi ewSet upDoneScr i pt,
Vi ewSet upChi | drenScri pt, Vi ewl dl eScri pt, and ReadBat t ery. If
you need to use one of these methods, you must call the inherited method
also (for example, i nherit ed: ?Vi ewSet upDoneScri pt ()).

The pr ot oLabel edBat t er yGauge uses an internal proto,

pr ot oBat t er yGauge, as its prototype. The pr ot oBat t er yGauge is based
on a view of the ¢l Vi ewclass and has two children: the gauge or charging
symbol, and the label.

Gauges and Slider Protos 6-37

CHAPTER 6

Controls Reference

The following is an example of a template that uses
pr ot oLabel edBat t er yGauge:

Batt eryGauge : = {

_proto: pr ot ol abel edbat t er ygauge,

vi ewBounds: {left: 58, top: 106, right: 186,
bottom 130},

/1 no other slots needed

}s

Slot description

vi ewBounds Set to the size and location where you want the gauge to
appear. The gauge fills the entire width of the view.

Time Protos

6-38

You can allow the user to specify dates and times with the protos described
in this section. For an overview of using the time protos in your applications
and a description of how to implement a simple time setter, see “Time
Protos” (page 7-14) in Newton Programmer’s Guide.

protoDigitalClock

This proto displays a digital clock that can be used to set the time. The user
can change the time by tapping each digit. Tapping on the upper part of the
digit increments it to the next number; tapping the lower part decrements it.
The following is an example of a pr ot oDi gi t al O ock view:

512K

Time Protos

CHAPTER 6

Controls Reference

Slot descriptions

vi ewFl ags For future compatibility, you must set the vCl i ckabl e
flag. (Note, however, that clicks are processed by the
children of this proto.)

vi ewBounds The clock size is fixed at 119x28 pixels.

viewdustify The default setting is vj Parent Lef t H +
vj Par ent TopV.

i ncrement The amount to increment or decrement for each tap. The
default is 1.

tinme Required. The time to which the clock should be set,

expressed in the number of minutes elapsed since
midnight, January 1, 1904. When the time is changed,
this slot is updated with the currently set time.

Note that a t i e slot must be set, either here or
somewhere above this proto in the inheritance hierarchy.

wWr appi ng Set to non-ni | (the default value) to wrap around day
boundaries.
mdnite Set to non-ni | if the value 0 should indicate midnight

tomorrow (in other words, the end of the current day).
The default value is ni | , which means that 0 indicates
midnight today (the beginning of the current day).

Refresh
clock: Ref resh()

Updates the appearance of the clock. You can call this method when the
system time is changed by some external event. For example, if there are two
clocks present and the user changes the time in one clock, you should send
the Ref r esh message to the second clock.

TimeChanged
clock: Ti meChanged()

Is called when the time is changed, to allow you to perform any required
actions in response to that event. The value returned by Ti meChanged is
ignored.

Time Protos 6-39

CHAPTER 6

Controls Reference

protoNewSetClock

This proto displays an analog clock that can be used to set the time. There are
four ways to change the time with this proto:

» Either hand can be dragged around to the correct position.

» Tapping the rim of the clock changes the minutes. However, if the tap is
within two degrees of the location pointed to by the minute hand, it is
interpreted as an attempt to drag the minute hand.

» Tapping the inner circle of dots sets the hours. If the tap is within two
degrees of the hour hand, it is interpreted as an attempt to drag the hour
hand.

= Aline can be drawn from the center of the clock face to either the border
(to set the minutes) or the inner dial (to set the hours).

The following is an example of a pr ot oNewSet Cl ock view:

The following slots and methods are used internally:

Vi ewSet upFor ncri pt, Vi ewSet upChi | drenScri pt,

Vi ewSet upDoneScri pt, Vi ewDr awScri pt, Viewd i ckScri pt,

ti ckSound, t ockSound, cuckooSound, ti ckTock, hour s, m nut es,

i con, fl conAsShape, DrawHand, di f f, Fast EnoughAt aN at anTabl e,
si nTabl e, di st ance.

The pr ot oNewSet O ock is based on a view of the cl Vi ewclass.

6-40 Time Protos

CHAPTER 6

Controls Reference

Slot descriptions

vi ewBounds Set to the size and location where you want the clock to
appear. By default, the bounds are {| eft: 30,
top: 30, right: 146, bottom 146}.The
height and width should be equal and a multiple of 29
to make the clock face appear its best.

viewJustify The default setting is vj Parent Lef t H +
vj Par ent TopV.
tinme Optional. The time to which the clock should be set,

expressed in the number of minutes elapsed since
midnight, January 1, 1904. If you don’t include this slot,
the clock is set to the current time. When the time is
changed, this slot is updated with the currently set time.

annot at i ons Optional. An array of four strings to be used as minute
annotations around the clock face, beginning with the
number at the top of the clock and proceeding
clockwise. For example, the strings ["N',"E", " S",
"W] would decorate the clock like a compass. If you
don’t specify this slot, the following annotations are
used: [*12","3","6","9"].

suppr essAnnot at i ons
Optional. If this slot exists (with any value), the four
minute annotations around the clock face are not drawn.

exact Hour Optional. If non-ni | , the hour hand clings exactly to the
hour markers. If ni |, the hour hand adjusts between
the minutes appropriately, according to the minutes. By
default, this is ni | . You rarely need to set this slot.

Refresh
clock: Ref resh()

Updates the appearance of the clock. You can call this method when the
system time is changed by some external event. For example, if there are two
clocks present and the user changes the time in one clock, you should send
the Ref r esh message to the second clock.

Time Protos 6-41

6-42

CHAPTER 6

Controls Reference

TimeChanged

clock: Ti meChanged()

Is called when the time is changed, to allow you to perform any actions
required to respond to that event. The value returned by Ti neChanged is
ignored.

protoSetClock

This proto creates an analog clock with which the user can set a time. The
user sets the hour by tapping the location in the inner circle where the hour
hand should be positioned and the location in the outer circle where the
minute hand should be positioned.

Note

The pr ot 0Set Cl ock has been replaced by the

pr ot oNewSet O ock, which you should use instead. The
pr ot 0Set Cl ock remains available for compatibility of
older applications. O

The following is an example of a pr ot 0Set Cl ock view:

The following methods are defined internally: Vi ewDr awScr i pt,

Vi ewSt r okeScri pt,Di ff, Di stance, DrawHand, DrawHi | i t e, and
Fast EnoughAt an. If you need to use one of these methods, you must call
the inherited method also (for example,

i nherited: ?Vi ewDr awScri pt ()).

The pr ot 0Set O ock is based on a view of the ¢l Pi ct ur eVi ewclass.

The following is an example of a template that uses pr ot 0Set Cl ock:

Time Protos

CHAPTER 6

Controls Reference

clock :={...

_proto: protoSetd ock,

hour s: nil, // updated when a newtine is set
m nutes: nil, // updated when a newtime is set

Ti meChanged: func()
begin
/1 do this so the old hands are erased...
self:Dirty();
/1 insert your code in place of the followi ng line
print("H" && hours & "M" && m nutes);
end,

Vi ewSet upFornScript: func() // show the current tine
begin
| ocal t =Time();
self.hours :=(t DV 60) MDD 24;
sel f.mnutes: =t MOD 60;

end,
B
Slot descriptions
vi ewBounds The clock size is fixed at 64x64 pixels.
vi ewFl ags The default setting is vVi si bl e + vQ i ckable +
vSt rokesAl | owned.
vi ewFor mat Optional. The default setting is vf None.
hour s Initially set to ni | . This slot is updated with the new

hour when the user sets the hour hand.

m nut es Initially set to ni | . This slot is updated with the new
minute time when the user sets the minute hand.

Time Protos 6-43

CHAPTER 6

Controls Reference

TimeChanged

clock: Ti meChanged()

Is sent to the view when the user changes the time on the clock. To ensure
that the clock redraws properly, you should at least include the following
code:

self:Dirty()

protoAMPMCluster

This proto is used to include A.M. and P.M. radio buttons in a view. The
following is an example of a pr ot)oAMPMCl ust er view:

i am W pm

The bounds must be 70 pixels wide and 15 pixels high. To use this proto,
define a parent (a cl Vi ew for instance), declare a pr ot oNewSet Cl ock to
the parent as' set t er, and add a pr ot oAMPMCl ust er to the same parent.

The pr ot oAMPMCl ust er uses pr ot oRadi oCl ust er as its proto;
pr ot oRadi oCl ust er is based on a view of the cl Vi ewclass.

The following is an example of a template that uses pr ot oAMPMCl ust er :

pi cker := RDef Chil d(nyTi mePopup, 'setter, RDefTenplate({
_proto: protoNewSet d ock,

1.,
1)
RDef Chi | d(nyTi mePopup, 'anmpnButtons, {
_proto: pr ot oAMPMCl ust er,
vi ewBounds: Set Bounds(0, 2, 70, 20),

viewJusti fy: vj CenterH
+ vj SiblingCenterH + vj SiblingBottonV,

1)

6-44 Time Protos

CHAPTER 6

Controls Reference

Slot descriptions

tinme Required. This slot must be set, either here or
somewhere above this proto in the inheritance hierarchy.

Special View Protos

You can use the protos in this section to provide special-purpose views in
your applications. For an overview of using the special view protos in your
applications, see “Special View Protos” (page 7-16) in Newton Programmer’s
Guide.

protoDragger

This proto creates a view that the user can move around the screen by
dragging it with the pen. This view has a rounded matte frame with a small
control at the top-center of the frame. The user drags the view by “grabbing”
the small control. The view can be dragged only within the bounds of its
parent view. The following is an example of a pr ot oDr agger view:

The proto defines no contents for the draggable view. You need to add your
own contents by adding child templates to it.

By default, pr ot oDr agger does not support scrolling or overview. If you
want the view to support scrolling or overview (that is, to handle the scroll
arrows and overview button), set the vAppl i cat i on bit in the vi ewFl ags
slot, and provide the appropriate methods (Vi ewScr ol | UpScri pt,

Vi ewScr ol | DownScri pt, and Vi ewOver vi ewScr i pt) to handle scroll
and overview messages.

Special View Protos 6-45

6-46

CHAPTER 6

Controls Reference

The pr ot oDr agger is based on a view of the ¢l Vi ewclass and does not
have any child views.

The following example is a template using pr ot oDr agger :

dragger: = {...

_proto: pr ot oDr agger,

vi ewBounds: {left:-5, top:104, right: 168, bottom 162},
vi ewdusti fy: vj Parent Cent er H,

viewfl ags: vVisi bl e+tvd i ckabl e,

B
theText :={... [/ child of the draggable view
_proto: protostatictext,
t ext: “I''"'mdraggable. . ",
vi ewBounds: {left:40, top:24, right: 144, bottom 48},
vi ewf ont : si npl eFont 12+t sBol d,
1
Slot descriptions
vi ewBounds Set to the size and location where you want the view to
appear.
vi ewFl ags The default setting is vCl i ckabl e. Although you can
add other view flags, you must not remove
vQ i ckabl e.
vi ewFor mat Optional. The default setting is vf Fi | | Whi te +

vf FraneDragger + vfPen(7) + vflnset(1) +
vf Round(5) .

noScr ol | Optional. This slot holds a message that is used in an
error alert if the scroll arrows are tapped and you have
not provided a Vi ewScr ol | UpScri pt or
Vi ewScr ol | DownScr i pt method to handle the event.
This error occurs only if the vAppl i cat i on flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application

Special View Protos

CHAPTER 6

Controls Reference

does not support scrolling,” which you can change if
you want.

noOver vi ew Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a Vi ewOver vi ewScri pt method to
handle the event. This error occurs only if the
vAppl i cati on flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

protoDragNGo

This proto is identical to pr ot oDr agger, except that it includes a close box
in the lower-right corner of the view. The following is an example of a
pr ot oDr agNGo view:

protoDragMGo

3]

The proto defines no contents for the view. You can add your own contents
by adding child templates to it.

The pr ot oDr agNGo is based on the pr ot oDr agger, which is based on a
view of the cl Vi ewclass. It is provided with one child view: a close box
based on the pr ot 0Cl oseBox proto (page 6-20).

The following example is a template using pr ot oDr agNGo:

dragngoView = {...

_proto: pr ot oDr agNGo,

vi ewBounds: {left:-2, top:98, right:158, bottom 170},
vi ewdusti fy: vj Parent Cent er H,

viewfl ags: VvVisible+vCickabl e,

Special View Protos 6-47

CHAPTER 6

Controls Reference

-}
theText := {... [/ child of the dragngo view
_proto: protostatictext,
text: "Drag'n Go view',

vi ewBounds: {left:22, top:30, right:134, bottom 54},
Vi ewf ont : si nmpl eFont 12+t sBol d,

s

Slot descriptions

vi ewBounds Set to the size and location where you want the floater
to appear.

vi ewFl ags The default setting is vCl i ckabl e. Although you can
add other view flags, you must not remove
vd i ckabl e.

vi ewFor mat Optional. The default setting isvf Fi | | White +

vf FrameDragger + vfPen(7) + vflnset(1) +
vf Round(5).

noScrol | Optional. This slot holds a message that appears in an
error alert if the scroll arrows are tapped and you have
not provided a Vi ewScr ol | UpScri pt or
Vi ewScr ol | DownScr i pt method to handle the event.
This error occurs only if the vAppl i cat i on flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application
does not support scrolling,” which you can change if
you want.

noOver vi ew Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a Vi ewOver vi ewScr i pt method to
handle the event. This error occurs only if the
vAppl i cat i on flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

6-48 Special View Protos

CHAPTER 6

Controls Reference

protoDrawer

This proto creates a view that acts like the Extras Drawer. When the user
opens the drawer, the view slides up from the bottom and a drawer-opening
sound plays. When the user closes the drawer, a drawer-closing sound plays.

The pr ot oDr awer has no content defined. You must add child views to it.
This proto is based on a view of the cl Vi ewclass.

The following is an example of a template that uses pr ot oDr awer :

myDrawer := {...
_proto: protoDrawer} // nothing el se needed for drawer
/1 add children to drawer

Slot descriptions

vi ewBounds Set to the size and location where you want the view to
appear.
Vi ewFl ags The default setting is VFl oati ng + vApplicati on.
vi ewFor mat Optional. The default setting is vf Pen(2) +
vf FranmeBl ack.
vi ewkf f ect Optional. The default setting is f XxDr awer Ef f ect .
showSound Optional. The default setting is ROM_dr awer open.
hi deSound Optional. The default setting is ROM_dr awer cl ose.

protoFloater

This proto creates a draggable view that floats above all other nonfloating
sibling views within an application. This proto is identical to

pr ot oDr agger, except that pr ot oFl oat er is horizontally centered within
its parent view, has an opening view effect, and has the vFl oat i ng flag set
in the vi ewFl ags slot.

Special View Protos 6-49

6-50

CHAPTER 6

Controls Reference

Note

For the base view of an application, it is recommended that
you use pr ot oDr agger instead of pr ot oFl oat er. The
floating property interferes with some system services for
applications. O

The proto defines no contents for the floating view. You can add your own
contents to the floater by adding child templates to it.

By default, pr ot oFl oat er does not support scrolling or overview. If you
want your floater to support scrolling or overview (that is, to handle the
scroll arrows and overview button), set the vAppl i cat i on bit in the

Vi ewFl ags slot, and provide the appropriate methods

(Vi ewScrol | UpScri pt, Vi enScr ol | DownScri pt, and

Vi ewOver vi ewScr i pt) to handle scroll and overview messages.

The pr ot oFl oat er is based on the pr ot oDr agger (page 6-45).

Slot descriptions

vi ewBounds Set to the size and location where you want the floater
to appear.
vi ewFl ags The default setting is VFI oat i ng + vC i ckabl e.

Although you can add other view flags, you must not
remove VFI oati ng orvd i ckabl e.

viewJustify Optional. The default setting is vj Par ent Cent er H.

vi ewFor mat Optional. The default setting isvf Fi | | White +
vf FrameDragger + vfPen(7) + vflnset(1) +
vf Round(5).

vi ewkf f ect Optional. The default effect is f xZoonOpenEf f ect .

noScrol | Optional. This slot holds a message that appears in an
error alert if the scroll arrows are tapped and you have
not provided a Vi ewScr ol | UpScri pt or
Vi ewScr ol | DownScri pt method to handle the event.
This error occurs only if the vAppl i cat i on flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application
does not support scrolling,” which you can change if
you want.

Special View Protos

CHAPTER 6

Controls Reference

noOver vi ew Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a Vi ewOver vi ewScri pt method to
handle the event. This error occurs only if the
vAppl i cat i on flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

protoFloatNGo

This proto is identical to pr ot oFl oat er, except that it includes a close box
in the lower-right corner of the floating view.

Note

For the base view of an application, it is recommended that
you use pr ot oDr agNGo instead of pr ot oFl oat NGo. The
floating property interferes with some system services for
applications. O

The proto defines one child, the close box, for the floating view. You can add
your own contents to the floater by adding child templates to it.

The pr ot oFl oat NCo is based on the pr ot oFl oat er (page 6-49), which is
based on the pr ot oDr agger (page 6-45). It is provided with one child view
that is a close box based on the pr ot 0Cl oseBox (page 6-20).

Slot descriptions

vi ewBounds Set to the size and location where you want the floater
to appear.
vi ewFl ags The default setting is VFI oat i ng + vd i ckabl e.

Although you can add other view flags, you must not
remove VFl oat i ng orvCd i ckabl e.

viewJustify Optional. The default setting is vj Par ent Cent er H.

vi ewFor mat Optional. The default setting isvf Fi | | White +
vf FrameDragger + vfPen(7) + vflnset(1l) +
vf Round(5).

Special View Protos 6-51

6-52

CHAPTER 6

Controls Reference

vi ewkf f ect Optional. The default effect is f xZoonOpenEf f ect .

noScrol | Optional. This slot holds a message that appears in an
error alert if the scroll arrows are tapped and you have
not provided a Vi ewScr ol | UpScri pt or
Vi ewScr ol | DownScr i pt method to handle the event.
This error occurs only if the vAppl i cat i on flag is set
for this view (it is not set by default), and it is receiving
scroll events. The default message is, “This application
does not support scrolling,” which you can change if
you want.

noOver vi ew Optional. This slot holds a message that appears in an
error alert if the overview button is tapped and you
have not provided a Vi ewOver vi ewScr i pt method to
handle the event. This error occurs only if the
VAppl i cat i on flag is set for this view (it is not set by
default), and it is receiving overview events. The default
message is, “This application does not support
Overview,” which you can change if you want.

protoGlance

This proto creates a text view that closes itself automatically after it has been
shown for a brief period of time. The pr ot 0@ ance view also closes
immediately if the user taps the view. The following is an example of a

pr ot od ance view:

8,192 11:00 amn 46 bytes

The following methods are defined internally: Vi ewSet upDoneScr i pt,

Vi ewCl i ckScri pt,and Vi ew dl eScri pt . If you need to use one of these
methods, be sure to call the inherited method also (for example,

i nherited: ?Viewd ickScript()).

The pr ot 0@ ance is based on a lightweight paragraph view, as described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer’s Guide.

Special View Protos

CHAPTER 6

Controls Reference

A prot od ance view is typically hidden until the user performs an action
such as tapping a button. After the button is tapped, the OQpen message is
sent to the pr ot 0@ ance view to cause it to show itself.

The following example is a template using pr ot 0@ ance (and the button
that opens the glance view):

nmyd ance := {...

_proto: pr ot ogl ance,
t ext: "Just a glance...",
vi ewl dl eFr equency: 5000,
Vi ewf ont : ROM f ont Syst enBBol d,
vi ewdusti fy: vj Cent er V+vj Cent er H,
1
showd ance := {... // Button that opens the glance view
_proto: pr ot ot ext but t on,
text: "Show it",

Buttond ickScript: func()
myd ance: Open(),

b

Slot descriptions

vi ewBounds Set to the size and location where you want the view to
appear.

viewJustify Optional. The default setting is vj CenterV +
vj Left H.

vi ewFor mat Optional. The default setting isvf Fi | | White +
vfPen(2) + vfFraneBlack + vflnset(1).

vi ewFont Optional. The default font is ROM f ont Syst en®Bol d.

vi ewkf f ect Optional. The default effect is f xR ght +

f xReveal Li ne.

vi ewl dl eFr equency
Optional. The length of time that the view is to remain
open, in milliseconds. The default is 3000 milliseconds
(three seconds). Specify an integer greater than zero.

Special View Protos 6-53

CHAPTER 6

Controls Reference

t ext The text string to display in the view.

protoStaticText

This proto is used for static text. It defines a one-line paragraph view that is
read-only and left-justified. The following is an example of a
prot oSt ati cText view:

File this note in...

i None {Unfiled)
¢ Business

.} Important

{7: Mliscellaneous
{.¢ Personal

The pr ot oSt ati cText is based on a view of the cl Par agr aphVi ewclass.

The following is an example of a template that uses pr ot oSt at i cText:

heading := {...
_proto: prot oSt aticText,
Vi ewbounds: Rel Bounds(30, 15, 170, 50),
vi ewdustify: vj Cent er H+vj TopV,
Vi ewFont : ROM f ont Syst ent O,
t ext: "Pick your favorite color:",
-}
Slot descriptions
vi ewBounds Set to the location where you want the text to appear.
vi ewFl ags The default setting is vVi si bl e + vReadOnly. You

do not usually need to change this setting.
t ext A string that is the text you want to display.

6-54 Special View Protos

CHAPTER 6

Controls Reference

vi ewFont Optional. The default font is ROM f ont Syst en®Bol d.
This slot is ignored if the st yl es slot is present.
viewdustify Optional. The default setting isvj Lef t H +
onelLi neOnl y.
vi ewFor mat Optional. The default is vf None.

vi ewTr ansf er Mode
Optional. The default transfer mode is nodeQr.

t abs Optional. An array of as many as eight tab-stop
positions, in pixels. For example: [10, 20, 30, 40].

styles Optional. If multiple font styles are used for the text,
this is an array of alternating run lengths and font
information. The first element is the run length (in
characters) of the first style run, and the second element
is the font style of that run. The third element is the run
length of the second style run, and so on. All the run
lengths must add up to the total text length. If the text is
all in a single font, the font in the vi ewFont slot
specifies the font style, and the st y| es slot is not
needed. For information on how to specify a font in the
styl es array, see the section “Specifying a Font” in
Chapter 8, “Text and Ink Input and Display.”

View Appearance Protos

You can use the protos described in this section to add to the appearance of
your views in certain ways. For an overview of using the view appearance
protos in your applications, see “View Appearance Protos” (page 7-18) in
Newton Programmer’s Guide.

View Appearance Protos 6-55

6-56

CHAPTER 6

Controls Reference

protoBorder

This is simply a view filled with black, to use as a border, a line, or a black
rectangle. The following is an example of a pr ot oBor der view:

The pr ot oBor der is based on a view of the cl Vi ewclass.

The following is an example of a template that uses pr ot oBor der :

theBorder := {...

_proto: pr ot oBor der,

vi ewBounds: SetBounds(0, 0, 0, 2), // 2-pixel high line
vi ewJusti fy: vj Parent Ful | H,

-}
Slot descriptions
vi ewBounds Set to the size and location where you want the border
to appear.
vi ewFl ags The default setting is vVi si bl e.
vi ewFor mat Optional. The default setting is vf Fi | | Bl ack.
protoDivider

This proto is used to create a divider bar that extends the whole width of its
parent view. The divider bar consists of a text string near the left end of a
thick line, as shown in the view below:

== Y our Title Here
The Vi ewSet upChi | dr enScri pt method is defined internally. If you need

to use this method, you must call the inherited method also (for example,
i nherited: ?Vi ewSet upChi | drenScri pt ()).

View Appearance Protos

CHAPTER 6

Controls Reference

The pr ot oDi vi der is based on a view of the cl Vi ewclass. It has the
following two child views declared in itself:

= di vi der. This child view uses the pr ot oBor der (page 6-56). It is used
for the solid black line.

= di vi der Text . The text label on the divider bar. This child view is based
on a lightweight paragraph view, as described in “Lightweight Paragraph
Views” (page 8-11) in Newton Programmer’s Guide.

The following is an example of a template that uses pr ot oDi vi der:

prot oCoverBorder := {...

_proto: prot oD vi der,

Vi ewFont : ROM f ont Syst enll8Bol d,
title: " COVER SHEET",

}

Slot descriptions

vi ewBounds Set to the size and location where you want the divider
bar to appear. By default, the divider extends the entire
width of its parent view (see vi ewJust i fy).

vi ewFl ags The default setting is vVi si bl e + vReadOnl y. You
do not usually need to change this setting.

vi ewFont Optional. The default font is ROM f ont Syst en®Bol d.

viewJustify Optional. The default setting is vj Par ent Ful | H.

vi ewFor mat Optional. The default setting is vf None. In most cases
you won’t need to change this.

title A string that is the text on the divider bar.

titl eHei ght Optional. The height of the divider view defaults to the

height of the font used. For a taller divider view, set this
slot to a greater value.

View Appearance Protos 6-57

6-58

CHAPTER 6

Controls Reference

protoTitle

This proto is used to create a title centered at the top of a view. The following
view shows a prot oTi t| e thathasitsti t| el con slot filled in:

£ My Application

The Vi ewSet upFor nScr i pt method is defined internally. If you need to
use this method, you must call the inherited method also (for example,
i nherited: ?Vi ewSet upFor nScri pt ()).

The pr ot oTi t| e is based on a lightweight paragraph view, as described in
“Lightweight Paragraph Views” (page 8-11) in Newton Programmer’s Guide.

The following is an example of a template that uses prot oTi t | e:

myTitle := {...

_proto: protoTitle,

titl eHei ght: 18,

title: "Preferences”

-}

Slot descriptions

viewJustify Optional. The default setting is vj Par ent Cent er H +
vj Parent TopV + vj CenterV + vjCenterH

vi ewFor mat Optional. The default setting is vf Fi | | Bl ack +
vf Round(3) .

vi ewFont Optional. The default font is ROM f ont Syst eml0Bol d.

title A string that is the title.

titlelcon Optional. A bitmap frame (like the frame returned from

Get Pi ct AsBi t s). See Newton 2.0 User Interface
Guidelines for icon size guidelines.

titl eHei ght Optional. The height of the title view (black rectangle)
defaults to the height of the font used. If you want a
taller title view, set this slot to a greater value.

View Appearance Protos

CHAPTER 6

Controls Reference

vi ewTr ansf er Mode
Optional. The default transfer mode is nodeBi c.

Status Bar Protos

You can use the protos described in this section to display a status bar at the
bottom of a view. For an overview of using the status bar protos in your
applications, see “Status Bar Protos” (page 7-19) in Newton Programmer’s
Guide.

protoStatus

This proto is used to create a status bar at the bottom of a view. The status
bar includes a large close button at the right side and an analog clock at the
left side. If the user taps the analog clock, a digital clock is displayed for
three seconds. The following is an example of a pr ot 0St at us view:

19, x}

Note

The new status bar protos newt St at usBar NoCl ose and
newt St at usBar, are the preferred way to add a status bar
to your applications. These protos, which are described in
“NewtApp Reference” (page 3-1), simplify adding buttons
and automate hiding the close box when your application is
moved into the background. O

The vi ewdust i f y flags for this view are set so that the status bar always
appears at the bottom of its parent view and always occupies the full width
of the parent view. Instantiators are not required to set any slots. However,
the application base view in which the pr ot oSt at us view is included must
include the following slot:

decl areSel f: ' base

Status Bar Protos 6-59

6-60

CHAPTER 6

Controls Reference

This identifies the view that gets closed when the close box in the status bar
is tapped.

The pr ot 0St at us is based on another proto called pr ot oSt at usBar,
described in the next section, which contains two child views.

The pr ot oSt at us itself has one child view, the close button that appears at
the right side of the view. The close button is based on the
pr ot oLar geCl oseBox (page 6-22).

The following is an example of a template that uses pr ot oSt at us:

theStatus := {_proto: protostatus} // nothing el se needed

/1l base app nust include this slot:
decl areSel f: 'base

protoStatusBar

This proto is used to create a status bar at the bottom of a view. It is identical
to pr ot oSt at us, except that it does not include a close button. The
following is an example of a pr ot oSt at usBar view:

D

Note

The new status bar protos newt St at usBar NoCl ose and
newt St at usBar, are the preferred way to add a status bar
to your applications. These protos, which are described in
“NewtApp Reference” (page 3-1), simplify adding buttons
and automate hiding the close box when your application is
moved into the background. O

The vi ewdust i fy flags for this view are set so that the status bar always
appears at the bottom of its parent view and always occupies the full width
of the parent view. Instantiators are not required to set any slots.

Status Bar Protos

CHAPTER 6

Controls Reference

The pr ot 0St at usBar is based on a view of the ¢l Vi ewclass. The
pr ot oSt at usBar contains the following two child views:

= A small round analog clock that appears at the left side of the view. The
clock is based on a view of the cl Vi ewclass.

= A digital clock display that slides out from the analog clock when the user
taps the analog clock. This view is hidden automatically after three
seconds. This view is based on the pr ot 0@ ance proto (page 6-52).

Status Bar Protos 6-61

CHAPTER 7

Text and Ink Input and
Display Reference

This chapter provides reference information for all the constants, data
structures, methods, and functions available for your working with text in
your applications.

Text Constants and Data Structures

This section describes the constants and data structures you can use in your
applications to work with text.

Text Constants and Data Structures 7-1

CHAPTER 7

Text and Ink Input and Display Reference

Text Flags

The text flags listed below are view flags you can use to specify information
about text in views.

Constant Value

vW dt hl sPar ent W dt h (1 << 0)
vNoSpaces (1 << 1)
vW dt hGr owsW t hText (1 << 2)
vFi xedText Styl e (1 << 3)
vFi xedl nkText STyl e (1 << 4)
vExpect i ngNunber s (1 << 9)

Constant descriptions
vW dt hl sParent Wdt h
The view’s width is the same as that of its parent view.

vNoSpaces Do not insert spaces between words.

VW dt hGr ows W t hText
Causes the right horizontal boundary of the view to
extend only as far as the widest line of text in the
paragraph. This flag can only be used for paragraph
views that are children of an edit view.

vFi xedText Styl e
The font family, point size, and style of the vi ewFont
are applied to all recognized text in the paragraph.

vFi xedl nkText STyl e
The font point size and style of the vi ewfFont are
applied to all ink words in the paragraph.

vExpect i ngNunber s
Causes ink words to be scaled based on the assumption
that they represent numbers rather than lowercase
letters. Use for numeric fields in which the
vNurber sAl | owed flag is not set.

Text Constants and Data Structures

CHAPTER 7

Text and Ink Input and Display Reference

Font Constants for Use in Frames

This section describes the constants you can use to specify fonts in font

frames.

Font Family Constants

Use these font family constants to specify the font family in NewtonScript

font frames.

Symbol

'espy

' geneva

' newYor k
"handwriting

Font Face Constants

Font Family
Espy (system) font

Geneva font
New York font

Casual (handwriting) font

Use these font face constants to specify the font face in NewtonScript font

frames.

Constant
kFaceNor mal

kFaceBol d
kFaceltalic
kFaceUnderl i ne
kFaceQutli ne
kFaceSuper Scri pt
kFaceSubScri pt

Value
0x000

0x001
0x002
0x004
0x008
0x080
0x100

Text Constants and Data Structures

7-4

CHAPTER 7

Text and Ink Input and Display Reference

Constant descriptions

kFaceNor nmal Plain font face
kFaceBol d Bold font face
kFaceltalic Italic font face
kFaceUnderl i ne Underlined font face
kFaceQut!li ne Outlined font face
kFaceSuper Scri pt Superscripted font face
kFaceSubScri pt Subscripted font face

Font Constants for Packed Font Integer Specifications

This section describes the constants you can use to specify font information
in packed font integer specifications.

Built-in Fonts

The built-in font constants allow you to use a single integer value to specify
one of the fonts built into the Newton system, including the font family, font
face, and font size.

Constant Value
ROM f ont syst enB 9216
ROM f ont syst enBbol d 1057792
ROM f ont syst emBunder | i ne 4203520
ROM f ont syst enl0 10240
ROM f ont syst emlObol d 1058816
ROM f ont syst emlOunder | i ne 4204544
ROM f ont syst enil2 12288
ROM f ont syst eml2bol d 1060864
ROM f ont syst eml2under | i ne 4206592
ROM f ont syst enl4 14336
ROM f ont syst enll4bol d 1062912

Text Constants and Data Structures

CHAPTER 7

Text and Ink Input and Display Reference

Constant
ROM f ont syst enil4under | i ne

ROM f ont syst enil8

ROM f ont syst enil8bol d

ROM f ont syst eniLl8under | i ne
si mpl eFont 9

si nmpl eFont 10

si mpl eFont 12

si mpl eFont 18

fancyFont9 or userFont9
fancyFont 10 or userFont 10
fancyFont 12 or userFont12
fancyFont 18 or userFont 18
edi t Font 10

edi t Font 12

edit Font 18

Constant descriptions
ROM f ont syst enD

Value
4208640

18432
1067008
4212736
9218
10242
12290
18434
9217
10241
12289
18433
10243
12291
18435

9-point, plain face, Espy font

ROM f ont syst enBbol d

9-point, boldface, Espy font

ROM f ont syst enBunder | i ne

9-point, underline face, Espy font

ROM f ont syst enil0

10-point, plain face, Espy font

ROM f ont syst enllObol d

10-point, boldface, Espy font

ROM f ont syst enilOunder | i ne

10-point, underline face, Espy font

Text Constants and Data Structures

CHAPTER 7

Text and Ink Input and Display Reference

ROM f ont syst enil2
12-point, plain face, Espy font

ROM f ont syst enml2bol d

12-point, boldface, Espy font
ROM f ont syst enll2under | i ne

12-point, underline face, Espy font
ROM f ont syst enl4

14-point, plain face, Espy font
ROM f ont syst enll4bol d

14-point, boldface, Espy font
ROM f ont syst enll4under | i ne

14-point, underline face, Espy font
ROM f ont syst enil8

18-point, plain face, Espy font
ROM f ont syst enml8bol d

18-point, boldface, Espy font
ROM f ont syst enil8under | i ne

18-point, underline face, Espy font
si mpl eFont 9 9-point, plain face, Geneva font
si mpl eFont 10 10-point, plain face, Geneva font
si mpl eFont 12 12-point, plain face, Geneva font
si mpl eFont 18 18-point, plain face, Geneva font
fancyFont9 (userFont9)

9-point, plain face, New York font
fancyFont 10 (user Font 10)

10-point, plain face, New York font
fancyFont 12 (user Font 12)

12-point, plain face, New York font

f ancyFont 18 (user Font 18)
18-point, plain face, New York font

edi t Font 10 10-point, plain face, handwriting font
edi t Font 12 12-point, plain face, handwriting font
edi t Font 18 18-point, plain face, handwriting font

Text Constants and Data Structures

CHAPTER 7

Text and Ink Input and Display Reference

Font Family Constants

Use these font family constants to specify the family ID in a packed integer
font specification.

Constant descriptions

(none) The Espy (system) font

t sFancy The New York font

tsSinple The Geneva font

t sHWFont The Casual (handwriting) font

Font Face Constants for Packed Integer Font Specifications

Use these font face constants to specify the font face in a packed integer font
specification.

Constant Value
tsPlain 0

tsBol d 1048576
tsltalic 2097152
tsUnderline 4194304
tsQutline 8388608

t sSuper Scri pt 134217728
t sSubScri pt 268435456

Constant descriptions

tsPlain Plain font face

t sBol d Bold font face
tsltalic Italic font face
tsUnderline Underlined font face
tsQutline Outlined font face

t sSuper Scri pt Superscripted font face
t sSubScri pt Subscripted font face

Text Constants and Data Structures 7-7

CHAPTER 7

Text and Ink Input and Display Reference

Keyboard Constants

This section describes the constants you can use with keyboard views.

Keyboard Registration Constants

When you register a keyboard, you can specify these flags to define how the
keyboard is used.

Constant Value
kKbdUsesKeyCodes 1
kKbdTr acksCar et 2
kKbdf or I nput 4

Constant descriptions

kKbdUsesKeyCodes
The keyboard is key code-based, which means that the
system has to redraw the view whenever the Shift,
Option, or another modifier key is pressed on this or
any other key code-based view. This is because a single
key map is used for all keyboard views.

kKbdTr acksCar et
The Vi ewCar et ChangedScri pt method of the
keyboard view is called whenever the caret changes
position.

kKbdf or | nput The insertion caret is activated when this keyboard
opens, if the caret was not already active. Use this when
your keyboard provides input capabilities.

Text Constants and Data Structures

CHAPTER 7

Text and Ink Input and Display Reference

Key Descriptor Constants

The key descriptor constants specify the appearance of each key in a
keyboard.

Constant Value

keySpacer (1 << 29)
keyAutoH lite (1 << 28)
keyl nset Uni t (1 << 25)
keyFr amed (1 << 23)
keyRoundi ngUni t (1 << 20)
keyLef t Open (1 << 19)
keyTopQOpen (1 << 18)
keyRi ght Open (1 << 17)
keyBot t omOpen (1 << 16)
keyHUni t (1 << 11)
keyHHal f (1 << 10)
keyHQuart er (1 << 9)
keyHEi ght h (1 << 8)
keyVuni t (1 << 3)
keyVHal f (1 << 2)
keyVQuart er (1 << 1)
keyVEi ght h (1 << 0)

Constant descriptions

keySpacer Nothing is drawn in this space; it is a spacer, not a key.
keyAut oHi i te Highlight this key when it is pressed.
keyl nset Uni t Inset this key’s frame a certain number of pixels within

its space. Multiply this constant by the number of pixels
you want to inset, from 0-7.

Text Constants and Data Structures 7-9

CHAPTER 7

Text and Ink Input and Display Reference

keyFr armed The thickness of the frame around the key. Multiply this
constant by the number of pixels you want to use for the
frame thickness, a value in the range 0-3.

keyRoundi ngUni t
The roundedness of the frame corners. Multiply this
constant by the number of pixels you want to use for the
corner radius, from 0-15, zero being square.

keyLef t Open No frame line is drawn along the left side of this key.
keyTopQOpen No frame line is drawn along the top side of this key.
keyRi ght Open No frame line is drawn along the right side of this key.
keyBot t omOpen No frame line is drawn along the bottom side of this key.

keyHuni t Used in a key dimensions formula to specify horizontal
units.

keyHHal f Defines a number of half-units.

keyHQuart er Defines a number of quarter-units.

keyHEi ght h Defines a number of eighth-units.

keyVuni t Used in a key dimensions formula to specify vertical
units.

keyVHal f Defines a number of half-units.

keyVQuart er Defines a number of quarter-units.

keyVEi ght h Defines a number of eighth-units.

Note

See “Defining Keys in a Keyboard View” (page 8-30) in
Newton Programmer’s Guide for more information about the
keyHUni t, keyHHal f, keyHQuart er, keyHEi ght h,
keyVUni t, keyVHal f, keyVQuart er, and keyVEi ght h
constants. O

7-10 Text Constants and Data Structures

CHAPTER 7

Text and Ink Input and Display Reference

Keyboard Modifier Keys

Use the keyboard modifier key constants to determine which modifier keys
have been pressed or when a character is “delivered” from a keyboard.

Constant Value

kl sSof t Keyboar d (1 << 24)
kCommandModi fi er (1 << 25)
ksShi ft Modifier (1 << 26)
kCapsLockMbdi fi er (1 << 27)
kOpti onsModi fi er (1 << 28)
kControl Modi fi er (1 << 29)

Constant descriptions

kl sSof t Keyboar d
If t r ue, the character was entered on a “soft” keyboard;
if not, the character was entered on an external
keyboard.

kCommandModi fi er

If t r ue, the Command key was in effect.
ksShi ft Modi fier Iftrue, the Shift key was in effect.
kCapsLockModi fi er

If t r ue, the Caps Lock key was in effect.
kOpti onsModi fi er

If t r ue, the Option key was in effect.

kCont r ol Modi fi er
If t r ue, the Control key was in effect.

Line Patterns

Aline pattern, which you use for customizing the display of the ruling lines
in an edit or paragraph view, is an 8-byte binary data structure with the class
'pattern.

Text Constants and Data Structures 7-11

CHAPTER 7

Text and Ink Input and Display Reference

The bit pattern of the bytes defines which pixels are turned on in the line. A
typical line pattern is defined as shown here:

nmyPattern : = SetC ass(C one("\ UAAAAAAAAAAAAAAAA") |
"pattern);

This code clones a string, which is already a binary object, and changes its

class to' pat t er n. The string is specified with hex character codes whose

binary representation creates the pattern. Each 2-digit hex code creates one
byte of the pattern.

When the line is drawn, the first bit of the pattern is aligned with the first
pixel of the line. The pattern is repeated as necessary.

The Rich String Format

The rich string format lets you embed ink data in a text string. The location
of each ink word in the string is indicated by a placeholder character
(0xF700 or 0xF701), and the data for each ink word is stored after the string
terminator character at the end of the string. The final 32 bits in a rich string
also have special meaning.

Text Views and Protos

This section describes the views and protos that you can use to display text
and receive text input.

General Input View (clEditView)

The cl Edi t Vi ewclass is used to accept text input. The cl Edi t Vi ewclass
contains no data. When it receives input it creates child views—a

cl Par agr aphVi ewto hold text or ink text and a ¢l Pol ygonVi ewto hold
graphics or raw ink.

7-12 Text Views and Protos

CHAPTER 7

Text and Ink Input and Display Reference

You can also add pictures to cl Edi t Vi ewviews. To add a picture to a
cl Edi t Vi ew you need to create an appropriate template and add that
template to the view’s vi ewChi | dr en.

For a list of the features provided by cl Edi t Vi ew see “General Input
Views” (page 8-6) in Newton Programmer’s Guide. The same section provides
an example of a template that defines a view of the cl Edi t Vi ewclass.

Slot descriptions

vi ewBounds Set to the size and location where you want the view to
appear.
vi ewFl ags The default setting is vVi si bl e. You will most likely

want to set additional flags to control the recognition
behavior of the view.

vi ewFor mat Optional. The default setting is:
viFi Il Wite + vfFraneBl ack + vfPen(1).
Vi ewLi neSpaci ng
Sets the spacing between the lines, in pixels.
vi ewLi nePattern
Optional. Sets a custom pattern that is used to draw the
lines in the view. In the vi ewFor mat slot editor in
NTK, you must also set the Lines item to Custom to
signal that you are using a custom pattern. (This sets the
vf Cust onk<vf Li nesShi ft flag in the vi ewFor nmat
slot.)
Patterns are binary data structures, which are described
in “Line Patterns” (page 7-11).
A view of this class can appear as a blank space. Normally, you want the
view to contain a series of horizontal dotted lines, like lined writing paper, to
show that the view accepts input. For information on how to create this
effect, see “Creating the Lined Paper Effect in a Text View” (page 8-8) in
Newton Programmer’s Guide.

Child views that are automatically created by a cl Edi t Vi ewhave the
vNoScri pt s flag set in their vi ewFl ags slot, as described in “System

Text Views and Protos 7-13

7-14

CHAPTER 7

Text and Ink Input and Display Reference

Messages in Automatically Created Views” (page 8-8) in Newton
Programmer’s Guide.

Functions and Methods for Edit Views

This section describes the messages that are sent to edit views. You can
define methods for these messages.

EditAddWordScript

view:Edi t AddWor dScr i pt (form, bounds)

Is sent to an edit view when a new paragraph is about to be added to the edit
view.

form The paragraph template that is about to be added to the
edit view.
bounds The bounds of the written ink or typewritten character

that has caused the new paragraph to be added.

You can use this script to modify the paragraph that is about to be added to
the edit view. Your method must return the template to be added.

If you do not provide this method, or if you return form unchanged, the
default action is taken: the system adds the paragraph view to the edit view
in the usual manner at the usual location.

NotesText

Not esText (childArray)
Returns a string that represents all of the text in an edit view.

childArray An array of child views of an edit view. You should use
the edi t Vi ew. vi ewChi | dr en slot.

The Not esText function creates a string in which distinct paragraphs are
separated by carriage return characters. The Not esText function uses the
location of each child view within the edit view to determine the order in
which the strings are output.

Text Views and Protos

CHAPTER 7

Text and Ink Input and Display Reference

If any of the child views contains ink, Not esText returns a rich string. If
none of the views contains ink, Not esText returns a plain string.

You can use the Not esText function to export edit view text to a
non-Newton computer or e-mail system.

Paragraph View (clParagraphView)

The cl Par agr aphVi ewclass displays text or accepts text input. For a list of
the features provided by cl Par agr aphVi ew see “Paragraph Views”

(page 8-10) in Newton Programmer’s Guide. The same section provides an
example of a template that defines a view of the cl Par agr aphVi ewclass.

Slot descriptions

vi ewBounds Set to the size and location where you want the view to
appear.

t ext A string that is the text currently contained in the view.

vi ewFont Required, unless the st yl es slot is specified. The

vi ewFont slot sets the font used to display text in the
view. Note that if the view template itself does not
contain this slot, it is inherited through proto
inheritance only, not parent inheritance. See “Using
Fonts for Text and Ink Display” (page 8-17) in Newton
Programmer’s Guide for a detailed description of how to
specify a font. If the text in the view has multiple fonts,
the st yl es slot is used to specify the font, instead of
the vi ewFont slot.

vi ewFl ags The default setting is vVi si bl e. You will most likely
want to set additional flags to control the recognition
behavior of the view. See the discussion of recognition
flags in “Recognition” (page 9-1) in Newton
Programmer’s Guide.

vi ewFor mat Optional. The default setting is vf Fi | | Wi t e+
vf FraneBl ack+vf Pen(1) +vf Li nesGr ay.

vi ewJustify Optional. The default setting is vj Lef t H+vj TopV+
vj Par ent Lef t H+vj Par ent TopV+noLi neLim ts.

Text Views and Protos 7-15

7-16

CHAPTER 7

Text and Ink Input and Display Reference

t abs

styl es

t ext Fl ags

copyProtection

Text Views and Protos

Note that this view class does not support vertical
justification of the view text for multiline text views.
Therefore, the vertical justification flags (vj Cent er V,
vj Bot t onV, and vj Ful | V) apply only if the

onelLi neOnl y flag is also set.

Optional. An array of up to eight tab-stop positions, in
pixels. For example: [10, 20, 30, 40]. These positions are
pixel values, relative to the left boundary of the view.

Optional. An array of alternating run lengths and font
information, if multiple font styles are used. The first
element is the run length (in characters) of the first style
run, and the second element is the font style of the first
run. The third element is the run length of the second
style run, and so on. For ink words, the length value is
always 1, and the style specification is a binary object
that contains the ink data. All of the run lengths must
add up to the total text length. If the text is all in a single
font, the font in the vi ewFont slot specifies the font
style, and the st y| es slot is not needed. For
information on how to specify a font in the st yl es
array, see “Text and Styles” (page 8-25) in Newton
Programmer’s Guide.

Optional. Can contain one or more of the text flags
described in “Text Flags” (page 7-2).

Specifies restrictions on copying the view by dragging it
into another view or by using the clipboard. This slot
applies only to views of the class cl Par agr aphVi ew If
this slot is not present, there are no copy restrictions. In
this slot you can specify one or more copy protection
attributes, which are represented by constants defined
as bit flags. The copy protection attributes are listed and
described in Table 7-1.

CHAPTER 7

Text and Ink Input and Display Reference

Table 7-1 CopyPr ot ect i on constants

Constant Value Description
cpNoCopi es 1 The view cannot be copied.
cpReadOnl yCopi es 2 The view can be copied, but the

copy cannot be modified.

cpOri gi nal Onl yCopi es 4 The original view can be copied,
but copies of it cannot. When a
copy is made, the its
copyPr ot ect i on slot is changed
to 1 (cpNoCopi es) to prevent
further copying.

cpNewt onOnl yCopi es 8 The view can be copied, but on one
Newton device only. Copies cannot
be exported to a different Newton
device.

Input Line Protos

An input line is just that, a single line in which the user can enter data. Protos
are provided for input lines with and without an identifying label, and for
regular and rich-text input. The use of input line protos is described in
“Using Input Line Protos” (page 8-12) in Newton Programmer’s Guide.

protolnputLine

This proto is used for a one-line input field that is indicated by a dotted line
to write on. It defines a simple paragraph view that accepts any kind of text
input and is left-justified, as described in “protolnputLine” (page 8-12) in
Newton Programmer’s Guide. The same section provides an example of a
template using pr ot ol nput Li ne.

Text Views and Protos 7-17

7-18

CHAPTER 7

Text and Ink Input and Display Reference

Slot descriptions
vi ewBounds

vi ewFl ags

t ext

ewFont

\Y

viewJustify

ewFor nmat

\%
\'

\

\'

\

menory

Text Views and Protos

ewLi neSpaci ng

ewLi nePattern

Set to the location where you want the input field to

appear.
Set particular view flags to limit recognition, if desired.
The default setting is vVi si bl e + vO i ckable +
vGesturesAl | owed + vCharsAllowed +
vNurber sAl | owed. For more information about the
recognition view flags, see “Recognition” (page 9-1) in
Newton Programmer’s Guide.

Optional. Set to a string that is the initial text, if any, to
be shown in the input field. The default is no text.
During run time, this slot holds the current text that
exists in the input field.

Optional. This sets the font for text the user writes in the
input field. The default is edi t Font 12.

Optional. The default setting is vj Lef t H +
oneLi neOnl y.

Optional. The default setting is vf Li nesGr ay.

ewTlr ansf er Mbde

Optional. The default mode is nodeCr.

Optional. The line spacing is the height of the input line
in pixels and it defaults to the setting of the parent view,
or to 20, if there is no parent setting.

Optional. Sets a custom pattern for drawing the line in
the view. A pattern is an 8-byte binary data structure
with the class ' pat t er n. For information about
specifying a line pattern, see “Defining a Line Pattern”
(page 8-9) in Newton Programmer’s Guide.

ewChangedScri pt

Optional. This method is called whenever the value of
the input field is changed.
Used to reference a list of the last n items chosen. The

value of this slot is a symbol that names the list. The
symbol must incorporate your developer signature, as

CHAPTER 7

Text and Ink Input and Display Reference

described in “protoLabellnputLine” (page 8-13) in
Newton Programmer’s Guide.

The following additional methods are defined internally:

Vi ewSet upFor nScri pt and Vi ewSet upDoneScr i pt . If you need to use
one of these methods, be sure to call the inherited method also (for example,
i nherited: ?Vi ewSet upFor nScri pt ()), otherwise the proto may not
work as expected.

protoRichInputLine

This proto is the text and ink equivalent of the pr ot ol nput Li ne. The slot
descriptions and discussion are exactly the same as for pr ot ol nput Li ne.

protoLabellnputLine

This proto is used for a one-line input field that includes a text label and can
optionally feature a pop-up menu. See “protoLabellnputLine” (page 8-13) in
Newton Programmer’s Guide for a description of how to use this proto.

Slot descriptions

vi ewBounds Set to the location where you want the view to appear.
Note that the view should have a height equal to or
greater than the value set for vi ewlLi neSpaci ng.

ent ryFl ags Set particular flags to limit recognition, if desired. The
setting you specify in this slot is used for the
vi ewFl ags slot of the input field. The default setting is
vVisible + vQickable + vGesturesAl |l owed
+ vChar sAl | oned + vNunber sAl | owed. For more
information about the recognition view flags, see
“Recognition” (page 9-1) in Newton Programmer’s Guide.

| abel Set to a string that is the label text.

| abel Font Optional. Sets the font used for the label. The default is
ROM f ont Syst enBBol d.

| abel Commands Optional. If this slot is supplied, the picker feature is
activated and the label is shown with a diamond to its
left to indicate that it is a picker.

Text Views and Protos 7-19

7-20

CHAPTER 7

Text and Ink Input and Display Reference

Specify an array of strings that should appear in a
picker when the user taps the label. To include a thin,
gray separator line, specify the symbol

' pi ckSepar at or. For a thicker black line, specify the
symbol' pi ckSol i dSepar at or.

The currently selected item in the list, if there is one, is
marked with a check mark to its left.

cur Label Command
Optional. If the | abel Cormands slot is supplied, this
slot specifies which item in that array should be initially
marked with a check mark. Specify an integer, which is
used as an index into the | abel Commands array. If you
omit this slot, no item is initially marked with a check
mark.

i ndent Optional. Set to the distance from the left edge of the
view where the dotted input line should begin. The
default is 4 pixels to the right of the label text. This slot
is useful if you are specifying several labeled input
fields in a column, and want all the dotted input lines to
line up beneath one another. If you specify this slot, be
sure to leave enough room for the label text.

Vi ewLi neSpaci ng
Optional. The line spacing is the height of the input line
in pixels and it defaults to the setting of the parent view,
or to 20, if there is no parent setting.

vi ewLi nePattern
Optional. Sets a custom pattern that is used to draw the
line in the view. A pattern is an 8-byte binary data
structure with the class ' pat t er n. For information
about specifying a line pattern, see “Defining a Line
Pattern” (page 8-9) in Newton Programmer’s Guide.

t ext Set up Optional. This method is called when the view is
instantiated to set an initial value in the input field. This
method is passed no parameters and should return a
string, which is set as the initial value in the input field.

Text Views and Protos

CHAPTER 7

Text and Ink Input and Display Reference

updat eText

t ext Changed

set Label Text

If you don’t supply this method, the input field is
initially empty.

Optional. You can call this method to programmatically
change the value of the text in the input field. This
action is reversible by the user with the Undo button.
This method takes one parameter, a string that is the
new value of the input field. Note that you don’t
normally need to call this method; the input field is
updated automatically when the user writes in it.

Optional. This method is called whenever the value of
the input field is changed. It is passed no parameters. If
you don’t supply this method, no default action occurs.

Optional. You can call this method to dynamically
change the label text after the view has already been
opened. This method takes one parameter, a string that
is the new label text.

set Label Commands

| abel di ck

Optional. You can call this method to dynamically set
the | abel Commands array. This method takes one
parameter, an array of strings that should appear in the
picker.

Optional. This method is called when the user taps the
label. It is passed one parameter, the stroke unit that
was passed to the vi ewC i ckScri pt method of the
label. This message notifies the view, which gives you a
chance to handle the event when the label is tapped. If
you don’t supply this method or choose not to handle
the event, the default action is to display the picker, get
the user’s choice, enter the chosen text into the input
line, and dirty the input line to cause a redraw.

This function must return either t r ue or ni | . If it
returns t r ue, the default action is not finished; the
assumption is that you have handled the event yourself.
If it returns ni | , the default action is still performed
after this method returns.

| abel Acti onScri pt

Text Views and Protos

Optional. This method is called when an item is chosen

7-21

CHAPTER 7

Text and Ink Input and Display Reference

from the picker. It is passed one parameter, which is the
index of the item selected from the | abel Commrands
array. This message notifies the view, which gives you a
chance to handle the event when an item is chosen from
the picker. If you don’t supply this method or choose
not to handle the event, the default action is to set the
text in the input line to the string that was chosen from
the picker.

This function must return either t r ue or ni | . If it
returns t r ue, the default action is not finished; the
assumption is that you have handled the event yourself.
If it returns ni | , the default action is still performed
after this method returns.

Note that inking is automatically turned off when the label is tapped.

The pr ot oLabel | nput Li ne is based on a view of the cl Vi ewclass, and
includes two child views: | abel Li ne and ent r yLi ne. These views are
described in “protoLabellnputLine” (page 8-13) in Newton Programmer’s
Guide.

protoRichLabellnputLine

This proto is the text and ink equivalent of the pr ot oLabel | nput Li ne.
The slot descriptions and discussion are exactly the same as for
pr ot oLabel | nput Li ne.

Text and Ink Display Functions and Methods

7-22

This section describes the functions and methods you can use in applications
to display text and ink in views. For more information, see “Text and Ink in
Views” (page 8-14) in Newton Programmer’s Guide.

Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

Functions and Methods for Measuring Text Views

This section describes the functions you can use to measure or predict the
bounds of a text view.

There are two measurement functions: Text Bounds and

Tot al Text Bounds. The Text Bounds function is more efficient, but is
accurate only in limited circumstances. You can use the Text Bounds
function if the view meets the following conditions:

= it contains no tabs
= it uses a single font
= it uses fixed line spacing

If your view does not meet these conditions, use the Tot al Text Bounds
function for measuring the bounds of the view.

TextBounds

Text Bounds(rStr, fontFrame, viewBounds)
Computes the bounds of a text string within a view.

rStr A string or rich string that does not contain any tabs or
line breaks.

fontFrame Either a standard font specification, or a frame that
contains the following two slots:
f ont A font specification.
justification
Optional. The text justification, which
mustbe:' |l eft, 'center,or'right.
The default valueis' | ef t.
viewBounds A bounds frame in which either the ri ght or bot t om
slot has a value of 0.

The Text Bounds function computes the bounds frame for a text string that
is drawn using the supplied font specification. The Text Bounds function
modifies the slots in vi ewBounds to specify the bounds for rStr.

Text and Ink Display Functions and Methods 7-23

7-24

CHAPTER 7

Text and Ink Input and Display Reference

If the ri ght value of the original bounds frame is 0, Text Bounds computes
how wide the bounds box needs to be for the text to fit into a specified height
value, and stores that value into the r i ght slot.

If the bot t omvalue of the original bounds frame is 0, Text Bounds
computes how tall the bounds box needs to be for the text to fit into a
specified width value, and stores that value into the bot t omslot.

If both the ri ght and bot t omvalues of the original bounds frame are 0, the
wi dt h and hei ght slots are modified based on the explicit line breaks in
rStr.

TotalTextBounds

Tot al Text Bounds(paraSpec, editSpec)

Predicts the bounds of a complex paragraph view, based on the text in the
view.

paraSpec A paragraph view template that must contain the
following slots: t ext , vi ewFont , and vi ewBounds.
The bot t omslot in vi ewBounds should have a value
of 0.

editSpec A template for the edit view in which the paragraph is
to be enclosed. This can be ni | .

You should include this parameter if you are going to
create a paragraph view as the child of a cl Edi t Vi ew
since the properties of the edit view affect the
computation.

The Tot al Text Bounds function returns a bounds frame for a

cl Par agr aphVi ewthat encloses the specified text. The returned bounds
frame contains the same | ef t, ri ght, and t op values as the vi ewBounds
slot of paraSpec. The bot t omslot of the returned bounds frame is filled in
with the appropriate height value for the paragraph view.

The text slot of the paragraph view can contain plain strings or rich strings.

Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

Functions and Methods for Determining View Ink Types

This section describes the functions and methods you can use to determine
whether a view accepts raw ink or ink words as input.

Addink
Addl nk(edit, poly)

Adds ink to an edit view.

edit An edit view object.

poly A polygon frame that can be expanded into a
cl Pol ygonVi ewobject. This frame contains two slots:
i nk The ink data.

vi ewBounds
The bounds box for the ink.

The AddI nk function adds ink to an edit view. The ink is stored within the
edit view as a polygon view.

ViewAllowsInk

Vi ewAl | owsl nk(view)
Determines if view accepts raw ink as input.
view A view object.

The Vi ewAl | ows| nk function returns a non-ni | value if view accepts raw
ink as input. This function uses the view’s recognition configuration and
view flags to determine the return value.

Note

The value returned by the Vi ewAl | ows| nk function is not
necessarily the same as the state of the Recognition menu.
This is because a view that does not receive ink due to the
Recognition menu setting can allow ink. O

Text and Ink Display Functions and Methods 7-25

7-26

CHAPTER 7

Text and Ink Input and Display Reference

ViewAllowsInkWords

Vi ewAl | ows| nkWbr ds(view)
Determines if view accepts raw ink as input.
view A view object.

The Vi ewAl | ows| nkWor ds function returns a non-ni | value if the view
accepts ink words as input. This function uses the view’s recognition
configuration and view flags to determine the return value.

Font Attribute Functions and Methods

You can use the font attribute functions and methods to store or retrieve the
settings stored in a font specification. For more information about using fonts
in your text views, see “Using Fonts for Text and Ink Display” (page 8-17) in
Newton Programmer’s Guide.

FontAscent

Font Ascent (fontSpec)

Returns the ascent, in pixels, of the font specified by fontSpec. The ascent is
the vertical distance from the font baseline to the font ascent line.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

FontDescent

Font Descent (fontSpec)

Returns the descent, in pixels, of the font specified by fontSpec. The descent is
the vertical distance from the font baseline to the font descent line.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

FontHeight
Font Hei ght (fontSpec)

Returns the maximum height, in pixels, of the font specified by fontSpec. This
equals the font ascent plus the descent plus the leading.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

FontLeading

Font Leadi ng(fontSpec)

Returns the font leading, in pixels, of the font specified by fontSpec. This is
the vertical distance from the font descent line to the ascent line of the next
text line below it.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

GetFontFace
Get Font Face(fontSpec)

Returns the face of the font specified by fontSpec. The face is returned as an
integer value.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

GetFontFamilyNum
Get Font Fani | yNun{fontSpec)

Returns the family number for the font specified by fontSpec. Only the Espy,
Geneva, Handwriting (Casual), and New York font families currently have
numbers.

Returns ni | if no number is available or if the font is an ink font.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

Text and Ink Display Functions and Methods 7-27

CHAPTER 7

Text and Ink Input and Display Reference

GetFontFamilySym

Get Font Fami | ySyn{fontSpec)

Returns the symbol representing the typeface of the font specified by
fontSpec. The returned value is one of the font family symbols, as shown in
Table 8-3 (page 8-18) in Newton Programmer’s Guide.

Returns ni | if the fontSpec is an ink font binary object.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

GetFontSize

Get Font Si ze(fontSpec)
Returns the size of the font specified by fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

MakeCompactFont

MakeCormnpact Font (family, size, face)

Makes a new font specification from the supplied components.

family Can be either a symbol or integer that specifies a font
family.

size The point size as an integer value.

face The font face as an integer value.

Returns a font specification. If the font is a ROM font, a packed integer is
returned.

7-28 Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

SetFontFace

Set Font Face(fontSpec, newFace)

Sets the face of the font specified by fontSpec to the face specified by newFace
and returns the altered fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

newFace An integer, which specifies a font face.

Returns the altered fontSpec. If the font is a ROM font, a packed integer is
returned.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

Note

You can replace the current values in a fontSpec only with
your input specification. You cannot supplement the current
values. For example, you cannot add the bold attribute to a
font that already uses the underline attribute; instead, you
must specify both attributes in your input specification. To
combine existing values with new values, call the
appropriate font attribute retrieval function (e.g.,

Cet Font Face) and add in your new value(s). O

SetFontFamily

Set Font Fami | y(fontSpec, newFamily)

Sets the family of the font specified by fontSpec to the family specified by
newFamily and returns the altered fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

newFamily Can be either a symbol or integer that specifies a font
family.

Text and Ink Display Functions and Methods 7-29

CHAPTER 7

Text and Ink Input and Display Reference

Returns the altered fontSpec. If the font is a ROM font, a packed integer is
returned.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

SetFontParms

Set Font Par ns (fontSpec, whichParms)

Alters one or more components of a font specification. The whichParms
parameter specifies which components of the fontSpec to alter.

Set Font Par s returns a modified version of the font specification. If the
specification can be packed into an integer (if the font is a ROM font), it
returns a packed integer.

The returned value may be a modified version of the font passed in, or may
be a modified clone of the original fontSpec. If possible, a packed integer is

returned.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

whichParms A frame that specifies which components of the font

spec to alter. The slots that can be used individually or
in combination in this frame include:

si ze An integer representing the point size of
the type. Usual values include: 9,10,12,14,
and 18.

face An integer representing the font style

attribute. The constants that you can use
for font face values are shown in “Font
Face Constants for Packed Integer Font
Specifications” (page 7-7).

famly A symbol or integer representing the
typeface. Note that you cannot change the
family of an ink font. The constants that
you can use for font family numbers are

7-30 Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

shown in “Font Family Constants”
(page 7-7)

scal e Applies only to ink fonts. An integer
percentage of the original written ink size.
When this slot is present, the si ze slot is
ignored.

penSi ze Applies only to ink fonts. An integer
between 1 and 4.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

SetFontSize

Set Font Si ze(fontSpec, newSize)

Sets the size of the font specified by fontSpec to the size specified by newSize
and returns the altered fontSpec.

fontSpec A font specification. This can be an integer, frame, or
binary object specification of a font.

newsize The new font size, specified as an integer value.

Returns the altered fontSpec. If the font is a ROM font, a packed integer is
returned.

If you specify the fontSpec as a frame, the returned frame is cloned from the
input parameter fontSpec. If you specify the fontSpec as a binary object, the
binary object itself is modified.

Rich String Functions and Methods

This section describes the functions and methods you can use to operate with
rich strings. For a description of rich strings and the rich string format, see
“Rich Strings” (page 8-22) in Newton Programmer’s Guide.

Text and Ink Display Functions and Methods 7-31

7-32

CHAPTER 7

Text and Ink Input and Display Reference

DecodeRichString

DecodeRi chSt ri ng(richString, defaultFontSpec)

Returns a frame containing two slots: t ext and a st yl es. These slots can be
placed in a paragraph view for editing or viewing.

richString Arich string that can contain text and ink words.

defaultFontSpec The font specification for the text in richString. This is
usually the same as the vi ewFont slot of the view in
which the text is displayed.

Note
The Set Val ue function, which also decodes a rich string, is

more efficient than the DecodeRi chSt ri ng function. O

ExtractRangeAsRichString

view:Ext r act RangeAsRi chSt ri ng(offset, length)

Returns a rich string for the range of text specified from a paragraph view.
This method can be used only on paragraph views.

offset The beginning offset of the text range, specified as an
integer value.

length The number of characters in the range of text, specified
as an integer value. Each ink word in the rich string
counts as a single character.

GetRichString

view:Get Ri chStri ng()

Returns either a rich string or a plain string that represents the text in the
paragraph view to which the Get Ri chSt ri ng message is sent. If the
paragraph contains ink, Get Ri chSt ri ng returns a rich string; if not,
Get Ri chStri ng returns a plain string.

Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

IsRichString
I sRi chSt ri ng(testString)

Returns non-ni | if the testString parameter is a rich string containing ink.

testString Arich string that can contain text and ink words.

MakeRichString
MakeRi chSt ri ng(text, styleArray)

Encodes the data from the text and styleArray parameters into a rich string.
text The text from the t ext slot of a paragraph view.

styleArray The array found in the st yl es slot of a view. The
format of this array is described in the section “Text and
Styles” (page 8-25) in Newton Programmer’s Guide.

Returns a rich string that has the encoded information for the text and style
array parameters.

Striplnk

Stri pl nk(richString, replaceChar)

Modifies richString, replacing every ink word placeholder in the string with
replaceChar. If replaceChar is ni | , the ink words are deleted.

richString The rich string to strip of ink word placeholders.

replaceChar The character to insert into richString in place of the ink
word placeholders. Use ni | to delete all ink words
from the rich string.

Returns the modified string.

A WARNING
The St ri pl nk function destructively modifies richString. a

Text and Ink Display Functions and Methods 7-33

7-34

CHAPTER 7

Text and Ink Input and Display Reference

Functions and Methods for Accessing Ink in Views

This section describes the functions you can use to determine if a view has
ink in it and to access the ink in a paragraph view.

GetlnkAt

Cet | nkAt (para, index)
Returns the next ink in the paragraph view specified by para.
para A paragraph view.

index The starting position of the search. If this value is ni | ,
Cet | nkAt starts searching at the beginning of the
paragraph text. If this value is an integer, Get | nk At
starts searching at the next position after index.

The Get | nkAt function returns a polygon view that contains the ink.

NextInkIndex

Next I nkl ndex(para, index)
Finds the next piece of ink within the paragraph view specified by para.
para A paragraph view.

index The starting position of the search. If this value is ni | ,
Next | nkl ndex starts searching at the beginning of the
paragraph text. If this value is an integer,

Next | nkl ndex starts searching at the next position
after index.

Returns the offset of the next ink in the paragraph. If Next | nkl ndex does
not find ink, it returns ni | .

To start checking at the beginning of the text, use ni | as the value of index.
To start checking for ink at offset i, use i-1 as the value of index. To start
checking at the next location in the text, use the value returned by the
previous call to Next | nkl ndex.

Text and Ink Display Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

ParaContainslink

Par aCont ai nsl nk(para)
Determines if the paragraph view specified by para contains ink.
para A paragraph view.

If the paragraph view contains ink, Par aCont ai nsl nk returns the offset
within the paragraph of the first piece of ink. If the paragraph view does not
contain ink, Par aCont ai nsl nk returns ni | .

PolyContainsink

Pol yCont ai nsl nk(poly)
Determines if the polygon specified by poly contains ink.
poly A polygon view.

Returns t r ue if the polygon contains ink and ni | if not.

Keyboards

This section describes the views, protos, and functions you can use in your
applications to work with on-screen keyboards.

Keyboard View (clKeyboardView)

The cl Keyboar dVi ewclass displays keyboard-like arrays of buttons that
can be pressed (tapped with the pen) to perform an action. To read about
how to use this class, see “Keyboard Views” (page 8-26) in Newton
Programmer’s Guide.

Keyboards 7-35

7-36

CHAPTER 7

Text and Ink Input and Display Reference

Slot descriptions

_noRepeat If present, indicates that keys do not repeat while held
down.

vi ewBounds Set to the size and location where you want the view to
appear.

keyDefi ni ti ons An array that defines the layout of the keys, as
described in “The Key Definitions Array” (page 8-31) in
Newton Programmer’s Guide.

vi ewFl ags The default setting is vVi si bl e + vd i ckabl e.

vi ewFor mat Optional. The default setting is ni | .

keyArrayl ndex Optional. Determines the array element to use for a key
legend or result, allowing dynamic indexing into an
array for legends or results. See “The Key Definitions
Array” (page 8-31) in Newton Programmer’s Guide.

keyH ghl i ght Keys
Optional. An array of keys that to highlight on the
displayed keyboard. Specify an array of keyResul t
items, as described in “The Key Definitions Array”
(page 8-31) in Newton Programmer’s Guide

keyResul t sAr eKeycodes
Optional. If true, indicates that integers specified as
results are to be interpreted as key codes, and the
corresponding character is returned. If ni | (the
default), integers are not converted to characters.

keyRecei ver Vi ew
Optional. The view to which key commands (as a result
of key presses) should be posted if no keyPr essScri pt
method exists. If the keyRecei ver Vi ewslot is not
found, the view identified by the symbol
' vi ewFr ont Key is used. This symbol evaluates at run
time to the current key receiver view.

keySound Optional. A reference to a sound frame. The sound is
played whenever a key is pressed. The default is no
sound.

keyPressScri pt Optional. This method is called whenever a key is
pressed. The key result of the key pressed is passed as a

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

parameter to this method. If this method is not
supplied, the key result is converted (if possible) into a
sequence of characters, which are posted as key events
to the key receiver view.

An example of a view definition of the cl Keyboar dVi ewclass, including
the key definitions for the view, is shown in “Defining Keys in a Keyboard
View” (page 8-30) in Newton Programmer’s Guide.

Keyboard Protos

This section provides reference information for the keyboard protos.

protoKeyboard

This proto creates a keyboard view that floats above all other views. It is
centered within its parent view and appears in a location that won’t obscure
the key-receiving view. For a description of how to use this proto, see
“protoKeyboard” (page 8-28) in Newton Programmer’s Guide.

Slot descriptions

saveBounds Set to the size and location where you want the
keyboard view to appear. (This is used as the
vi ewBounds value for the keyboard view.) Note that
the keyboard view may be displayed above or below
the location you specify, if it must be moved so as not to
obscure the key-receiving view. (You can “freeze” it in
place by using the f r eeze slot.)

freeze Optional. If set to t r ue, prevents automatic movement
of the keyboard view. This slot is set to ni | by default,
allowing movement of the keyboard view so as not to
obscure the key-receiving view, if it would be blocked
by the bounds you specified for the keyboard.

The following additional methods are defined internally:
Vi ewSet upFor nScri pt, Viewd i ckScri pt,and Vi ewQui t Scri pt . If
you need to use one of these methods, be sure to call the inherited method

Keyboards 7-37

7-38

CHAPTER 7

Text and Ink Input and Display Reference

also (for example, i nheri ted: ?Vi ewd i ckScri pt ()), otherwise the
proto may not work as expected.

This proto is used in conjunction with pr ot oKeypad to implement a
floating keyboard. It defines the parent view, and pr ot oKeypad is a child
view that defines the key characteristics.

The pr ot oKeyboar d itself uses the pr ot oFl oat er proto, which is
described in “Controls and Other Protos” (page 7-1) in Newton Programmer’s
Guide.

protoKeypad

This proto defines key characteristics for a keyboard view
(cl Keyboar dVi ewclass). For a description of how to use this proto, see
“protoKeypad” (page 8-29) in Newton Programmer’s Guide.

Slot descriptions

keyDefi nitions An array that defines the layout of the keys. Refer to the
cl Keyboar dVi ewdescription in “The Key Definitions
Array” (page 8-31) in Newton Programmer’s Guide.

vi ewFont Optional. The default font is ROM f ont Syst en9Bol d.
vi ewFor mat Optional. The default setting is vf Fi | | Wi t e.
keyArrayl ndex Optional. Set by this proto to zero.
keyHi ghl i ght Keys

Optional. Set by this proto toni | .

keyResul t sAr eKeycodes
Optional. Set by this proto to t r ue.

keyRecei ver Vi ew
Optional. Set by this proto to ' vi ewFr ont Key.

keySound Optional. Set by this proto tot ypewri ter.

keyPressScri pt Optional. This method is called whenever a key is
pressed. The result of the key press is passed as a
parameter to this method. If this method is not
supplied, the key result is converted (if possible) into a
sequence of characters that are posted as key events to
the key receiver view.

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

The pr ot oKeypad is based on a view of the class cl Keyboar dVi ew For
more information about the key slots listed above, refer to “Keyboard View
(cIKeyboardView)” (page 7-35).

Use this proto along with pr ot oKeyboar d to implement a floating
keyboard. The view using the pr ot oKeypad proto should be a child of the
view using the pr ot oKeyboar d proto.

protoKeyboardButton

This proto is used to include the keyboard button in a view. For a description
of how to use this proto, see “protoKeyboardButton” (page 8-29) in Newton
Programmer’s Guide.

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vd i ckabl e.

vi ewBounds Set to the size and location where you want the
keyboard to appear.

vi ewJustify Optional. The default setting is vj Center H +
vj Center V.

def aul t Keyboard
Required. The symbol of the default keyboard to open.
This value is not actually in the button view frame, but
is found by inheritance.

Note that the Vi ewd i ckScri pt, Buttond i ckScri pt, and
Pi ckActi onScri pt methods are used internally in the
pr ot oPi ct ur eBut t on and should not be overridden.

The pr ot oKeyboar dBut t on uses the pr ot oPi ct ur eBut t on as its proto;
and pr ot oPi ct ur eBut t on is based on a view of the cl Pi ct ur eVi ew
class.

Keyboards 7-39

7-40

CHAPTER 7

Text and Ink Input and Display Reference

protoSmallKeyboardButton

This proto is used to include the small keyboard button in a view. For a
description of how to use this proto, see “protoSmallKeyboardButton”
(page 8-30) in Newton Programmer’s Guide.

Slot descriptions

vi ewFl ags The defaultisvVi si bl e + vReadOnly +
vC i ckabl e.

vi ewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vj Cent er H +
vj Center V.

current Required. The symbol of the default keyboard to open.

This value is not actually in the button view frame, but
is found by inheritance.
The pr ot oSmal | Keyboar dBut t on uses the pr ot oKeyboar dBut t on as
its proto, and pr ot oKeyboar dBut t on uses the pr ot oPi ct ur eBut t on as
its proto.

Note that the Vi ewCl i ckScri pt, Buttond i ckScri pt, and
Pi ckActi onScri pt methods are used internally in the
pr ot oPi ct ur eBut t on and should not be overridden.

protoAlphaKeyboard

This proto is used to include an alphanumeric keyboard in a view. For a
description of how to use this proto, see “protoAlphaKeyboard” (page 8-30)
in Newton Programmer’s Guide.

Slot descriptions

vi ewBounds Set to the size and location where you want the
keyboard to appear.

vi ewJustify Optional. The default setting is vj Center H +
vj Cent er V.

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

protoNumericKeyboard

This proto is used to include a numeric keyboard in a view. For a description
of how to use this proto, see “protoNumericKeyboard” (page 8-30) in Newton
Programmer’s Guide.

Slot descriptions

vi ewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vj Center H +
vj CenterV.

protoPhoneKeyboard

This proto is used to include a phone keyboard in a view. For a description of
how to use this proto, see “protoPhoneKeyboard” (page 8-30) in Newton
Programmer’s Guide.

Slot descriptions

vi ewBounds Set to the size and location where you want the
keyboard to appear.

vi ewdustify Optional. The default setting is vj Cent er H +
vj CenterV.

protoDateKeyboard

This proto is used to include a time and date keyboard in a view. For a
description of how to use this proto, see “protoDateKeyboard” (page 8-30) in
Newton Programmer’s Guide.

Slot descriptions

vi ewBounds Set to the size and location where you want the
keyboard to appear.

viewJustify Optional. The default setting is vj Center H +
vj Center V.

Keyboards 7-41

7-42

CHAPTER 7

Text and Ink Input and Display Reference

Keyboard Functions and Methods

This section describes the functions and methods you can use with
keyboards in your Newton applications.

GetCaretBox

Cet Car et Box()

Returns a bounds frame containing the global coordinates of the text
insertion caret, if it is displayed. If there is a text selection in a view, the caret
is positioned before the first character of the selection, though it may not be
visible. If there is no text selection and the caret is not displayed, this
function may still return a bounds frame giving the virtual position of the
text caret. This is the last position of the caret when it was displayed, or the
position where handwritten text would be inserted (usually immediately
following existing text).

If there is no key-receiving view, ni | is returned.

KeyboardInput

view:Keyboar dl nput ()

Returns t r ue if the view is the current key view (the view receiving
keystrokes) and the keyboard is enabled (visible). Otherwise, this function
returns ni | .

This method applies only to views of the class cl Edi t Vi ewand
cl Par agr aphVi ew

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

KeylIn

Keyl n(keyCode, down)

Allows you to programmatically change the state of the modifier keys (Caps
Lock, Shift, and Option) on the alpha keyboard.

keyCode The physical keycode of the key whose state you want
to change. Caps Lock is 0x39, Shift is 0x38, and Option
is OX3A.

down Specify t r ue to cause the equivalent of a key press.

Specify ni | to release the key.

The key is highlighted on the alpha keyboard when it is pressed (down =

t r ue), and unhighlighted when it is released (down = ni |). Note that if the
keyboard is open, you must send it the Di r t y message after changing the
key state in order for the visual change to occur. This is not necessary if you
use the Key| n function to change the key state before opening the keyboard.

PostKeyString

Post KeySt ri ng(view, keyString)

Sends keystrokes to a view, as if they had been entered on a keyboard.
view The view to which to send keystrokes.

keyString A string containing the keystrokes to send.

This function always returns ni | .

SetKeyView
Set KeyVi ew(view, offset)

Sets the view that is to receive keyboard input from an on-screen keyboard
and positions the caret at the specified offset in that view. Note that this

Keyboards 7-43

7-44

CHAPTER 7

Text and Ink Input and Display Reference

function is only guaranteed to work with a cl Par agr aphVi ew To place the
caret in an edit view, you should use Set Car et | nf o or Posi ti onCar et .

view The view to receive keyboard input. This must be a
cl Par agr aphVi ew Using ni | for this value makes the
caret disappear.

offset The text caret is displayed at this character location. An
offset of zero indicates the beginning of the view, an
offset of one is after the first character, and so on.

Note that you may also call this function with only ni | as the argument, to
make the caret disappear. This function always returns ni | .

Keyboard Registry Functions and Methods

If your application includes its own keyboard, you may need to use these
functions. The system needs to know when keyboards are open, both for the
purposes of the insertion caret and for keyboard-related callbacks.

KeyboardConnected

Keyboar dConnect ed()

Returns non-ni | if a keyboard is connected to the Newton.

OpenKeyPadFor

OpenKeyPadFor (view)
Opens a context-sensitive keyboard for the specified view.

The OpenKeyPadFor function first searches the proto chain to see if the
view defines a keyboard in a _keyboar d slot. If so, it opens the keyboard
specified by that slot.

If the view does not define a keyboard, OQpenKeyPadFor checks to see if the
view allows only a single type of input for which the Newton system has a
corresponding keyboard: date, time, phone number, or number. If so, it
opens the appropriate keyboard.

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

If none of these other constraints is met, QpenKeyPadFor opens the
al phaKeyboar d.

view A view for which a context-sensitive keypad exists.
Generally this should be the view that is returned by
CGet KeyVi ew

Note

The Newton System Software uses the OpenKeypadFor
function to open a context-sensitive keyboard when the user
double-taps on a view in which a _keyboar d slot is
defined. O

RegGlobalKeyboard

Regd obal Keyboar d(kbdSymbol, kbdTemplate) // platformfile
function

Installs a keyboard as the only alphanumeric keyboard. This replaces the
built-in alpha keyboard view.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegd obal Keyboar dFunc wi t h (kbdSymbol, kbdTemplate) ;
A

kbdSymbol A unique identifier symbol for the keyboard view.

kbdTemplate A view template used to create the new keyboard. This
template must include the the following slot:

preAl | ocat edCont ext
This slot must have the value
" al phaKeyboar d.

Keyboards 7-45

7-46

CHAPTER 7

Text and Ink Input and Display Reference

RegisterOpenKeyboard

view: Regi st er OpenKeyboar d(flags)

Notifies the system that a keyboard view is open and displays the insertion
caret if necessary. You should call this method in your
Vi ewSet upDoneScri pt.

flags Specifies how the keyboard is used. You can use a
combination of the constants shown in the section
“Keyboard Registration Constants” (page 7-8).

Note

Each keyboard prototype automatically calls the
Regi st er OpenKeyboar d method. If you are using a
keyboard prototype, you need not call this method. O

UnRegGlobalKeyboard

UnRegd obal Keyboar d(kbdSymbol, kbdTemplate) // platformfile
function

De-installs a keyboard that was installed by the RegG obal Keyboar d
functions. This restores the built-in alpha keyboard view.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

cal |l kUnRegd obal Keyabor dFunc wi t h (kbdSymbol, kbdTemplate) ;
A

kbdSymbol A unique identifier symbol for the keyboard view.

UnregisterOpenKeyboard

view: Unr egi st er OQpenKeyboar d()

Notifies the system that a keyboard view is no longer visible, which causes
the insertion caret to be hidden, if necessary.

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

Note

The system automatically unregisters a keyboard when it is
hidden or closed. O

Caret Insertion Writing Mode Functions and Methods

Use these functions to determine the setting of caret insertion writing mode
or to set it yourself.

GetRemoteWriting
Get Renot eW i ting()

Returns non-ni | if caret insertion writing mode is currently enabled.

SetRemoteWriting

Set Renot eW i t i ng(newSetting)

Sets the caret insertion writing mode preference. If newSetting is ni | , caret
insertion writing mode is disabled; otherwise, caret insertion writing mode is
enabled.

newSetting Indicates the new setting (enabled or disabled) for caret
insertion writing mode. If newSetting is ni | , caret
insertion writing mode is disabled; otherwise, it is
enabled.

IMPORTANT

The caret insertion writing mode is a user preference that
you should rarely change. The Set Renot eW i t i ng method
is meant to be called only from preferences or applications
that serve a similar purpose. a

Keyboards 7-47

7-48

CHAPTER 7

Text and Ink Input and Display Reference

Insertion Caret Functions and Methods

This section describes the functions and methods you can use to retrieve
information about or manipulate the insertion caret.

GetCaretInfo

CetCaretlnfo()

Returns ni | if there is no insertion caret. If there is an insertion caret, returns
a frame with the following two slots:

Vi ew The view that owns the insertion caret. This can be
either a cl Par agr aphVi ewor acl Edi t Vi ew

info A frame whose contents depend on the type of view in
which the caret is positioned.

If the caret is in a paragraph view, the slots are

cl ass ' par aCar et

of f set The offset in characters of the caret
position or the start of the selection, if
there is one.

I engt h The length of the selection. The value of
this slot is 0 if there is no selection.

If the caret is in an edit view and not inside any existing
text, the slots are

cl ass "editCaret

X The x-coordinate of the caret, in local
coordinates.

y The y-coordinate of the caret, in local
coordinates.

If the caret is in a view that is more complex than a
single paragraph, the slots are

cl ass "hilite

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

GetKeyView
Get KeyVi ew()

Returns the view that owns the insertion caret.

Returns ni | if there is no insertion caret.

Note

The insertion caret may have a defined view and offset even
if it is not visible. The insertion caret is shown only when
caret insertion writing mode is on, a keyboard is connected,
or one or more keyboards are open on the screen. O

PositionCaret

view:Posi t i onCar et (X, y, playSound)

Positions the caret at local coordinates within the view. You can use this
method in an edit view.

X The x position of the insertion caret in coordinates local
to the view.

y The y position of the insertion caret in coordinates local
to the view.

playSound If this value is non-ni | , the system plays a sound when

the caret is positioned.
A WARNING

You can use the Posi t i onCar et method only with an
edit view. a

Keyboards 7-49

7-50

CHAPTER 7

Text and Ink Input and Display Reference

SetCaretInfo

Set Car et | nf o(view, info)

Restores the position of the insertion caret in a custom view that performs its
own caret location management.

view The view in which you want to modify the insertion
caret information.

info A frame in which you have specified the insertion caret
information, using the same value types as are returned
in the info parameter of the Get Car et | nf o function, as
described in “GetCaretInfo” (page 7-48).

A WARNING

You can use the Set Car et | nf o function to restore the caret
information for caret classes ' par aCaret or' edi t Caret.
You cannot use this function to restore caret information for
caret class ' hi | i t e. The caret classes are described in
“GetCaretInfo” (page 7-48). a

Application-Defined Methods for Keyboards

This section describes the keyboard-related methods you can define in order
to perform keyboard-related actions at certain times.

ViewCaretChangedScript

view: Vi ewCar et ChangedScr i pt (view, offset, length)

Is sent to a registered keyboard view whenever the caret position or text
selection has changed. Implement this method for a registered keyboard if
you need to respond in some way to a change in the caret position or text
selection.

view The view in which the caret appears.

offset Character offset of the insertion caret within the view,
beginning with zero.

Keyboards

CHAPTER 7

Text and Ink Input and Display Reference

length The length of the text selection. If this value is O, there is
no selection.

Input Event Functions and Methods

This section describes the methods that can use to handle and respond to
input events in your applications.

Functions and Methods for Hit-Testing

This section describes the methods you can use to gather information about
the location of user input in a paragraph view.

PointToCharOffset

view: Poi nt ToChar O f set (x,y)

Performs hit-testing for the character closest to the point specified by x and y
in a paragraph view. The x and y values are specified as global point
coordinates.

X,y Global point coordinates.

If the point (x,y) is within the paragraph margins, Poi nt ToChar O f set
finds the character nearest to the point and returns its offset, measured from
the beginning of the paragraph. If Poi nt ToChar O f set cannot find a
character, it returns - 1.

Note

This method works only for visible points in a paragraph
view. You cannot hit-test an off-screen or clipped point. O

Input Event Functions and Methods 7-51

7-52

CHAPTER 7

Text and Ink Input and Display Reference

PointToWord

view: Poi nt ToWor d(x,y)

Performs hit-testing for the word closest to the point specified by x and y.
The x and y values are specified as global point coordinates.

X,y Global point coordinates.

If the point (x,y) is within the paragraph margins, Poi nt ToWor d finds the
word nearest to the point and returns a frame with two slots: st art and
end. The st ar t slot specifies the offset from the beginning of the paragraph
to the start of the word. The end slot specifies the offset from the beginning
of the paragraph to the end of the word.

If Poi nt ToWdr d cannot find a word, it returns ni | .
Note

This method works only for visible points in a paragraph
view. You cannot hit-test an off-screen or clipped point. O

Functions and Methods for Handling Insertions

This section describes the methods and functions you can use to handle
insertion events.

The Insert Specification Frame

Several methods in this section receive an input parameter that is an insert
specification frame. This frame contains the following six slots:

insertltemns The items to be inserted. This can be a single item or an
array of items. Each item must be one of the valid item
forms shown in Table 7-2 (page 7-53).

addSpace Optional. The value t r ue adds a space between items
unless vNoSpaces is set.

undoabl e Optional. If t r ue, indicates that the insertion can be
undone; otherwise, the insertion cannot be undone. The
default value is t r ue.

Input Event Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

i nsert O f set Optional. The number of characters to offset the

insertion from the beginning of the paragraph.

repl aceChar s Optional. Replaces this number of characters, starting at

the insert offset. If no insert offset is specified, replaces
the selection (if there is one).

nmoveCar et Optional. If t r ue, indicates that the insertion caret

should be moved to the position following the insertion;
otherwise, the insertion caret is not moved. The default
valueistrue.

Table 7-2 Valid items in an insert specification
Item type Description Example
string Used for keyboard and plain "hel | 0"

text and styles
frame

rich string

ink binary
object

correctlnfo
frames

text insertions.

Used for styled text. {

text: "hi there"

styles: [len, fontSpec,

| en, fontSpec, ...]

Note that if st yl es is not
an array, it is assumed to be
a single f ont Spec that }
applies to all text.

Used for rich string
insertions.

Used for ink words (class
"i nkWor d).

Used for handwritten words.

For more information about cor r ect | nf o frames, see “Recognition”
(page 9-1) in Newton Programmer’s Guide.

Input Event Functions and Methods 7-53

7-54

CHAPTER 7

Text and Ink Input and Display Reference

Handlelnsertltems

view:Handl el nsert | t ens(insertSpec)
Inserts one or more items into a paragraph.

You usually implement this method for paragraph views; however, you can
implement it for a cl Vi ewthat has scripts set up to handle the
I nsertltens event.

insertSpec An insert specification frame, as described in the section
“The Insert Specification Frame” (page 7-52).

Returns ni | .

InsertltemsAtCaret

I nsertltensAt Car et (insertSpec)

Inserts one or more items into a paragraph at the caret position. The inserted
items replace the selection, if there is one.

You usually implement this method for paragraph views; however, you can
implement it for a cl Vi ewthat has scripts set up to handle the
I nsertltens event.

insertSpec An insert specification frame, as described in the section
“The Insert Specification Frame” (page 7-52).

Note

You should not use the following insert specification frame
slots for this method: r epl aceChars, i nsert O f set, and
moveCaret. O

Functions and Methods for Handling Ink Words

This section describes the functions and methods you can use to work with
ink words in your applications.

Input Event Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

GetiInkWordInfo

Get | nkWor dI nf o(inkWord)

Returns information about an ink word.

inkWord

An ink word.

Returns a frame with the following slots:

ori gWdth
ori gAscent
ori gDescent
ori gXHei ght
f ont Face
scal e

ori gPenSi ze

ori gFont Si ze
cur Font Si ze
cur PenSi ze
curWdth

cur Hei ght
cur Ascent
cur XHei ght

cur Descent

HandlelnkWord

The width of the originally written ink word.
The ascent of the originally written ink word.
The descent of the originally written ink word.
The x-height of the originally written ink word.
The font style of the ink word.

The scaling percentage for the ink word.

The pen width used to display the word. This is the
value defined in the Styles menu.

The font size of the originally written ink word.
The current font size of the ink word.

Unused. Do not rely on this value.

The current (scaled) width of the ink word.

The current (scaled) height of the ink word.
The current (scaled) ascent of the ink word.
The current (scaled) x-height of the ink word.

The current (scaled) descent of the ink word.

view: Handl el nkWbr d(strokeBundle)

Hands a stroke bundle off to a view for processing.

Input Event Functions and Methods 7-55

7-56

CHAPTER 7

Text and Ink Input and Display Reference

strokeBundle Raw stroke data for the ink word. You need to convert
this data to an ink word by calling the
St r okeBundl eTol nkWor d method, which is
described in “StrokeBundleToInkWord” (page 8-89).

The view’s Vi e nkWor dScr i pt, if any, is called as if the ink had been
written by the user.

HandleRawInk

view: Handl eRawl nk(strokeBundle)
Sends a stroke bundle to a view for handling.

strokeBundle Raw data for the sketch ink, as described in
“Recognition: Advanced Topics” (page 10-1).

The view’s Vi ewRawl nkScr i pt, if any, is called.

Application-Defined Methods for Handling Ink in a View

This section describes the messages that are sent for handling ink in a view.

ViewInkWordScript

view:Vi ewl nkWor dScr i pt (strokeBundle)

Is sent when an ink word is recognized and sent to a view. The system
searches for this method in the current view and its protos.

strokeBundle Stroke data for the ink word.
Returns t r ue if your method handles the incoming ink word and ni | if not.

If you do not handle the ink word, the edit and paragraph view default
handlers are used. Note that views other than edit and paragraph views do
not have default handlers.

Input Event Functions and Methods

CHAPTER 7

Text and Ink Input and Display Reference

ViewRawlInkScript
view:Vi ewRawl nkScr i pt (strokeBundle)

Is sent when sketch ink is passed to a view. The system searches for this
method in the current view and its protos.

strokeBundle Stroke data for the sketch ink.
Returns t r ue if your method handles the incoming sketch ink and ni | if not.

If you do not handle the sketch ink, the edit and paragraph view default
handlers are used. Note that views other than edit and paragraph views do
not have default handlers.

Input Event Functions and Methods 7-57

CHAPTER 8

Recognition System
Reference

This chapter describes in detail the constants, data structures, objects,
methods, and global functions you can use to work with the recognition
system.

Recognition System Data Structures

This section describes constants and data structures that you can use when
working with the recognition system, including system-wide settings, view
flags that control recognition behavior, system-supplied dictionaries, stroke
bundles, word units, gesture units, shape units, point arrays, r ecConf i g
frames, r cBasel nf o frames, and r cG i dl nf o frames.

Recognition System Data Structures 8-1

CHAPTER 8

Recognition System Reference

System-Wide Settings

You can use the following slots in the system’s user configuration data to
» specify the use of a particular recognizer.
» enable and disable the system’s ability to modify its handwriting model.

» enable and disable the automatic addition of words to the user dictionary
and the auto-add dictionary.

Note that the values of most of these slots are set by the user in various
preferences slips. Others are set by ar ecToggl e view associated with the
view performing recognition. Generally, you should not change the values of
these slots.

To access slots in the system’s user configuration data, use the

Get User Confi g and Set User Conf i g functions, as described in Newton
Programmer’s Guide Chapter 19, “Built-in Applications and System Data.”
After setting the values of recognition-related slots in the system’s user
configuration data, you must call the ReadCur si veOpt i ons function to
cause the recognition system to use the new settings.

Slot descriptions

| etterSetSel ection
Sets the text recognizer currently in use. This value may
be either of the constants kSt andar dChar Set | nf o
(cursive recognizer) or KUCBI ockChar Set | nf o
(printed recognizer). Although the recognizers built into
Newton platforms through version 2.0 of system
software support these values, other recognizers are not
guaranteed to support them. You cannot set this value
from your view’s r ecConf i g frame. This value is set
by the user; for more information, see “User Preferences
for Recognition” (page 9-14) in Newton Programmer’s
Guide.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

| ear ni ngEnabl edOpt i on
The default value t r ue specifies that the system records
learning data as the user corrects misrecognized words.
Conversely, the value ni | specifies that correcting
misrecognized words does not modify the
system-defined handwriting model. Because the printed
recognizer does not record learning data, it ignores this
value. For more information, see the description of this
slot in “protoRecConfig” beginning on page 8-36; see
also “User Preferences for Recognition” (page 9-14) in
Newton Programmer’s Guide.

| etter SpaceCursiveOption
The value of this slot affects the amount of space
required to consider sets of strokes as belonging to
separate letters or words. This value may be set by the
user from the Handwriting Recognition preferences slip,
or it may be set programmatically inarecConfi g
frame. For more information, see the description of this
slot in “protoRecConfig” beginning on page 8-36; see
also “User Preferences for Recognition” (page 9-14) in
Newton Programmer’s Guide.

ti meout Cur si veQOpti on
This value affects the amount of time a recognizer waits
from the completion of a stroke for subsequent strokes
that might belong to the same word, shape, or graphic.
For more information, see the description of this slot in
“protoRecConfig” beginning on page 8-36; see also
“User Preferences for Recognition” (page 9-14) in
Newton Programmer’s Guide.

speedCur si veOpti on
The amount of time the cursive recognizer spends
recognizing input. Not all recognizers use this value; for
more information, see the description of this slot

Recognition System Data Structures 8-3

CHAPTER 8

Recognition System Reference

beginning on page 8-39. See also “User Preferences for
Recognition” (page 9-14) in Newton Programmer’s Guide.

letterlnFiel dsOption
The value t r ue specifies that, in addition to providing
recognition behaviors specified by other settings,
recognizers able to do so provide letter-by-letter
recognition in pr ot oLabel | nput Li ne views. The
value ni | causes some recognizers to return only words
appearing in the set of dictionaries available to the
recognizer. On 2.0-based Newton systems, the cursive
recognizer respects the | et t er I nFi el dsQpti on
value; on the other hand, the printed recognizer always
provides letter-by-letter recognition regardless of the
value of this slot. The user can set this slot to t r ue by
selecting the “Letter-by-letter in fields” checkbox in the
Handwriting Settings preferences slip. For more
information, see “User Preferences for Recognition”
(page 9-14) in Newton Programmer’s Guide.

| ettersCursiveOption
The default value t r ue specifies that, in addition to
providing recognition behaviors specified by other
settings, recognizers able to do so provide
letter-by-letter recognition in cl Edi t Vi ewviews. The
value ni | causes some recognizers to return only words
appearing in the set of dictionaries available to the
recognizer. On 2.0-based systems, the cursive recognizer
respects the value of the | et t er sCur si veOpt i on
slot; on the other hand, the printed recognizer always
provides letter-by-letter recognition regardless of the
value of this slot. The user can set this slot to t r ue by
selecting the “Letter-by-letter in notes” checkbox in the
Handwriting Settings preferences slip. For more
information, see “User Preferences for Recognition”
(page 9-14) in Newton Programmer’s Guide.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

doAut oAdd The default value t r ue specifies that new words are
added to the user dictionary and the auto-add
dictionary automatically. The value ni | specifies that
words are not added to these dictionaries automatically.
For more information, see “Disabling the Auto-Add
Mechanism” (page 10-35) in Newton Programmer’s Guide.

doText Recogni ti on
The value t r ue enables word recognition. The system
sets the value of this slot to t r ue when the user selects
the Text item from the pr ot oRecToggl e view. For
more information, see “User Preferences for
Recognition” (page 9-14) in Newton Programmer’s Guide
and “Using RecConfig Frames to Enable Recognizers”
(page 10-10) in Newton Programmer’s Guide.

doShapeRecogni ti on
The value t r ue enables shape recognition. The system
sets the value of this slot to t r ue when the user selects
the Shapes item from the pr ot oRecToggl e view. For
more information, see “User Preferences for
Recognition” (page 9-14) in Newton Programmer’s Guide
and “Using RecConfig Frames to Enable Recognizers”
(page 10-10) in Newton Programmer’s Guide.

dol nkWor dRecogni ti on
The value t r ue causes the recognizer to convert strokes
to ink text rather than sketch ink. Ink text may also be
returned to a view when the text recognizer is enabled
but cannot recognize the input successfully or when text
and shape recognition is disabled. The system sets the
value of this slot to t r ue when the user selects the Ink
Text item from the pr ot oRecToggl e view. For more
information, see “User Preferences for Recognition”
(page 9-14) in Newton Programmer’s Guide and “Using
RecConfig Frames to Enable Recognizers” (page 10-10)
in Newton Programmer’s Guide.

Recognition System Data Structures 8-5

8-6

CHAPTER 8

Recognition System Reference

View Flags for Recognition

This section describes flags that enable the recognizers and dictionaries used
by views for recognition. The system also provides flags that specify aspects
of the view’s appearance and drawing behavior; for information about these
additional view flags, see Chapter 2, “Views Reference.”

Note that the specific set of dictionaries enabled by a particular flag can vary
according to the user’s current location as specified in the built in Time
Zones application. The set of dictionaries used by a particular view is
specified by a combination of the default settings, the locale specified in user
preferences, and the set of view flags specified for the view. For more
information about locales, see “How Locale Affects Recognition” (page 20-2)
in Newton Programmer’s Guide.

Multiple view flags may be combined to provide a view with a particular set
of attributes; however, every option may not be available in every kind of
view. For example, a view of the cl Vi ewclass can accept clicks (taps) but
can’t recognize words unless you supply code that provides this behavior.

The flags described here may be specified in the vi ewFl ags slot of the view
performing recognition or in the i nput Mask slot of the view’s r ecConf i g
frame. For information on using the vi ewF| ags slot, see “Enabling
Recognizers” (page 9-8) in Newton Programmer’s Guide. For information on
using the i nput Mask slot, see the following sections in Newton Programmer’s
Guide: “Creating a recConfig Frame”(page 10-9) and “Creating Single-Letter
Input Views”(page 10-15).

Note

Although the Newton Toolkit user interface distinguishes
between entry flags and view flags, this chapter refers to all
such flags as view flags. For more information, see
“Flag-Naming Conventions” (page 9-19) in Newton
Programmer’s Guide. O

Table 8-1 summarizes the view flags that enable text recognition using
enumerated dictionaries (including custom dictionaries).

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Table 8-1 View flags for text recognition using enumerated

dictionaries

Constant Value

vChar sAl | owed 1 << 12
or
0x01000

viettersAl | oned 1 << 14
or
0x04000

Description

Enables the default text recognizer and the
default dictionary set. The default text
recognizer is specified as a system-wide setting
by the user from within the Handwriting
Recognition preferences slip. The default
dictionary set for a particular view is defined
according to the view class or system prototype
from which it is derived, its set of view flags,
and the current locale. Setting this flag enables
dictionaries for common words, proper names,
and the review dictionary (which contains the
user, auto-add, and expand dictionaries). For
more information, see “How Locale Affects
Recognition” in Chapter 15, “Localizing
Newton Applications.”

Enables letter-by-letter text recognition. Set this
flag for views that may need to recognize
words not present in the currently available set
of dictionaries. Setting this flag enables the
default text recognizer; if that recognizer is the
cursive recognizer, it is enabled in
letter-by-letter mode, which allows it to
recognize combinations of letters that are not
dictionary items. (Note that the printed
recognizer can always recognize words that are
not present in dictionaries.) For example, the
cursive recognizer can return nonword
combinations of characters such as “xyz” when
thevLet t er Al | owed flag is set. Take care to
use this flag only when necessary, as it can slow
the performance of the cursive recognizer and
make it less reliable.

Recognition System Data Structures 8-7

CHAPTER 8

Recognition System Reference

Table 8-1 View flags for text recognition using enumerated
dictionaries (continued)

Constant Value

vAddr essFi el d 1 << 21
or
0x0200000

vNunmber sAl | owed 1 << 13
or
0x02000

vNanmeFi el d 1 << 22
or
0x0400000

Description

Enables recognizers and dictionaries suitable
for the input of address data in the current
locale. It is not necessary to set the

vPunct uat i onAl | owed or

vNurber sAl | owed flags in conjunction with
this flag. The set of dictionaries this flag enables
is suitable for recognizing numbers,
punctuation, abbreviations, common words,
and proper nouns. Words found in proper
noun dictionaries are in most cases capitalized
before they are returned to the view for
display; thus, you need not set the
vCapsRequi r ed flag in conjunction with the
vAddr essFi el d flag. At your discretion, you
can set the vCapsRequi r ed flag to force the
capitalization of recognized words before they
are returned to the view.

Enables the recognition of numeric characters,
monetary values (for example, $12.25), decimal
points, and signs (+ or —). To recognize integer
values only, set the vCust onDi cti onari es
flag instead of setting the vNunber sAl | owed
flag and place only the kNunber sDi ct
constant in the di ct i onari es slot of the view
oritsrecConfi g frame.

Enables text recognition optimized for name
data. This flag is usually combined with the
vCapsRequi r ed flag. This flag does not
provide access to or control of the Names
application or the Names soup.

8-8 Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Table 8-1 View flags for text recognition using enumerated
dictionaries (continued)

Constant Value
vCustonDi ctionarie 1 << 24
s or
0x01000000
vPunct uat i onAl | owe 1 << 15
d or
0x08000

Description

Enables text recognition using dictionaries
specified by values in the view’s

di ctionari es slot. This flag is used for views
that accept custom data such as company
names, plant species, and so on. When this flag
is set, the view’s template or r ecConf i g frame
must provide a di cti onari es slot that
contains a single dictionary identifier or an
array of dictionary identifiers. These identifiers
may refer to custom dictionaries you provide
or to built-in dictionaries that the system
provides. You need not set the

vChar sAl | owed flag with the

vCust onDi cti onari es flag unless the view
needs to use the system-supplied dictionaries
that the vChar sAl | owed flag enables.

Enables recognition of punctuation marks by
the cursive recognizer. (The printed recognizer
always recognizes punctuation marks in any
position in input strings, regardless of the
setting of the vPunct uat i onAl | owed flag.)
This flag enables recognition of the following
marks preceding a word: single quotation
mark, double quotation mark, left parenthesis,
and hyphen. This flag also enables the
recognition of the following marks at the end of
a word: single quotation mark, double
quotation mark, right parenthesis, hyphen,
period, comma, exclamation point, question
mark, colon, and semicolon.

Recognition System Data Structures 8-9

CHAPTER 8

Recognition System Reference

Table 8-1 View flags for text recognition using enumerated
dictionaries (continued)

Constant Value Description
vCapsRequi r ed 1 << 23 Forces capitalization of the first character of
or each recognized word before it is returned to
0x0800000 the view. Setting this flag reduces the view’s
ability to accept uncapitalized input. Views that
do not set this flag capitalize words according
to the size of the first letter in the word and the
capitalization requirement specified by the
dictionary used to recognize the word, if any.
Table 8-2 describes view flags that enable text recognition using
system-supplied lexical dictionaries.
Table 8-2 View flags for text recognition using lexical dictionaries
Constant Value Description
vNunber sAl | owe 1 << 13 Enables recognition of numbers, monetary values (for
d or example, $12.25), decimal points, and mathematical
0x02000 signs (+ and -).
vPhoneFi el d 1 << 18 Enables recognition of phone numbers. Note that the
or set of lexical dictionaries enabled by this flag varies
0x040000 with the text recognizer currently in use. Most
notably, views for which this flag is set can recognize
phone numbers with intermixed alphabetic characters
(for example, “1-800-NOOTOON") when the printed
recognizer is enabled, but not when the cursive
recognizer is enabled.
vDat eFi el d 1 << 19 Enables recognition of date formats (such as “March
or 3-95”), names of months, and names of days.
0x080000
vTi neFi el d 1 << 20 Enables recognition of times.
or
0x0100000

8-10

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Note

The lexical dictionaries enabled by a particular flag can vary
according to the user’s current location as specified in the
built in Time Zones application. For more information, see
“How Locale Affects Recognition” (page 20-2) in Newton

Programmer’s Guide. O

Table 8-3 describes view flags that control the nontextual aspects of

recognition system behavior.

Table 8-3 Nontext view flags

Constant Value Description

vNot hi ngAl | owed 0x00000000 The view accepts no handwritten or keyboard
or input. The NTK view editor does not provide a
0x0000 checkbox to set this flag, as it is equivalent to

turning off all of the other flags.

vAnyt hi ngAl | owed 65535 << 9 Set this flag only for views derived from the
or cl Edi t Vi ewclass. This flag is actually a mask
0x01FFFEOO that turns on all recognizers, theoretically

allowing the view to accept any kind of input;
however, the recognition that the view actually
performs at run time is controlled by a
combination of user preferences settings,
recToggl e settings, and r ecConf i g settings.
You must be certain that the r ecToggl e view
is visible when you use this flag, because it
allows the creation of a state in which nothing
is recognized. That is, if recognition is turned
off and the r ecToggl e view is not displayed,
the user cannot enable recognition in the view.

Note that you'll obtain faster and more accurate
recognition using the correct set of individual
flags for the types of data that your view
accepts. To control specific recognizers, you
must use a combination of the other view flags
that the system provides.

Recognition System Data Structures 8-11

CHAPTER 8

Recognition System Reference

Table 8-3

Nontext view flags (continued)

Constant
vCd i ckabl e

8-12

Value

1 << 9
or
0x0200

Description

The system sends the Vi ewCl i ckScri pt
message to the view once for each pen tap that
occurs within the view. The unit passed as the
argument to the Vi ewCl i ckScri pt method is
valid only during the recognition process—that
is, while the various recognition-related scripts
are being called. Do not attempt to save units
for later use.

You must set the va i ckabl e flag for any
view that is to accept pen input; no taps or
strokes are passed to the view when this flag is
not set. Views that handle taps explicitly (such
as buttons) or that track the pen themselves can
set this flag and use the Vi ewCl i ckScri pt
method to implement their handling of pen
input. This method can track the position of the
pen by calling the Get Poi nt function. For
more information, see “GetPoint” on page 8-79.

Electronic ink is turned on or off depending on
the v i ckabl e flag’s interaction with the

Vi ewd i ckScri pt method and the settings of
view flags for views in the _par ent chain. If
vd i ckabl e is the only view flag set for the
view, inking is turned off automatically.
However, if vQ i ckabl e is not set for the
view, any of its parent views may handle clicks
or draw ink. For more information, see “Taps
and Overlapping Views” (page 9-24) in Newton
Programmer’s Guide.

Ink is turned on in views having a

Vi ewd i ckScri pt method. To turn off
inking, the Vi ewd i ckScri pt method can
call either of the global functions | nkOf f or
I nkOF f UnHobbl ed. Note that the

TrackHi i t e and Tr ackBut t on methods
also disable inking.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Table 8-3 Nontext view flags (continued)
Constant Value Description
vStrokesAl | owed 1 << 10 The view accepts strokes and is sent the
or Vi ewSt r okeScr i pt message at the end of
0x0400 each stroke.

Note that when several strokes occur within the
amount of time specified by the

ti meout Cur si veQpt i ons value, only the
first stroke causes the Vi ewSt r okeScri pt
message to be sent.

The only time you need to set this flag is when
the view has a Vi ewSt r okeScr i pt method.
You might use this method to do something
application-specific with strokes, such as
recognizing your own gestures. Don’t set this
flag if your view does not have a

Vi ewsSt r okeScr i pt method—you’ll only
waste battery power!

You must also set the va i ckabl e flag when
using this flag; otherwise, the view accepts no
input.

Recognition System Data Structures 8-13

CHAPTER 8

Recognition System Reference

Table 8-3 Nontext view flags (continued)

Constant Value

vGest uresAl | oned 1 << 11
or
0x0800

vShapesAl | owed 1 << 16
or
0x010000

Description

The view accepts gesture strokes such as scrub,
highlight, tap, double tap, caret, and line. Most
views that accept input also set this flag so that
gestures such as scrub can be used. You must
also set the va i ckabl e flag when using the
vGest ur esAl | owed flag; otherwise, the view
accepts no pen input.

Setting this flag causes the view to send the

Vi ewGest ur eScri pt message when it
recognizes a gesture that it does not handle
automatically. Views based on the

cl Edi t Vi ewand cl Par agr aphVi ewclasses
handle standard gestures automatically. To
interpret gestures yourself in a cl Vi ewview,
you must set the vGest ur esAl | owned flag and
provide a Vi ewGest ur eScri pt method. See
“ViewGestureScript” (page 8-71) for more
information.

Enables shape recognition within a view based
on the cl Edi t Vi ewclass. You must also set
the va i ckabl e flag when using this flag;
otherwise, the view accepts no input.

8-14 Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Table 8-3 Nontext view flags (continued)
Constant Value Description
vSi ngl eUni t 1<<8 Disables the recognition system’s use of spatial
or cues (distance between strokes), forcing it to
0x0100 rely on temporal cues (time between the

completion of one stroke and the beginning of
another) to determine when the user has
completed a group of strokes. Using this flag
may result in better recognition of complex
stroke groups in which users tend to put large
spaces, such as phone numbers. This flag has
meaning for text recognizers only.

Once input has been recognized and added to
the view, subsequent input is recognized as
separate words. In effect, setting this flag
causes the recognizer to ignore short delays,
such as those that occur between writing the
individual characters in a word. Longer delays
cue the recognizer to group the most recently
completed set of strokes as a word. The amount
of time considered to be a longer delay is a
function of the speed of the processor and the
recognition system, as well as the value of the
ti meout Cur si veQpt i on user preference.

For additional information on suppressing
spaces, see the description of the vNoSpaces

flag.
vNoSpaces 1<<1 Directs a view based on the
or cl Par agr aphVi ewclass to not insert spaces
0x0002 between existing text and new text. This

post-processing flag neither restricts the
interpretation of the input strokes nor assists
the recognition system in choosing between
alternative interpretations of the input, as the
vSi ngl eUni t flag does.

VW dt hl sPar ent W dt 1<<0 The right boundary of the cl Par agr aphVi ew
h or view is extended to match that of its parent.
0x0001

Recognition System Data Structures 8-15

CHAPTER 8

Recognition System Reference

System-Supplied Dictionaries

The system supplies various enumerated and lexical dictionaries for the
recognition system’s use. The set of dictionaries used by a particular view is
specified by a combination of the default settings, the locale specified in user
preferences, and the set of view flags specified for the view.

Table 8-4 describes the system-supplied enumerated dictionaries accessible
from NewtonScript. Note that the content of the dictionary represented by
the kLocal Proper sDi cti onary constant may vary according to the
user’s locale. For information on locales, see Chapter 20, “Localizing Newton
Applications,” in Newton Programmer’s Guide.

Table 8-4 System-supplied enumerated dictionaries
Dictionary ID (constant) Value Contents
kUser Di cti onary 31 Words added by the user
kCommonDi cti onary 0 Commonly used words
kCountriesDi ctionary 8 Names of countries
kDaysMont hsDi cti onary 34 Names of days and months
kFi r st NamesDi cti onary 48 First names
kLocal CitiesDictionary 41 Names of cities
kLocal PropersDictionary?! 2 Proper names
kLocal St at esDi cti onary 43 Names of states, provinces, etc.
kShar edPr oper sDi cti onary 1 Proper names, company names, state or

province names, and abbreviations

! Locale-specific dictionary

8-16

Note

Although these constants currently evaluate to integers, do
not rely on the integer values. Use only the appropriate
constant names to reference these dictionaries. O

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Table 8-5 lists constants representing system-supplied lexical dictionaries
that define formats for dates, times, phone numbers, postal codes, currency
values, and other numeric values. Note that most lexical dictionaries are no
longer locale-specific—each dictionary specifies lexical formats for all locales.
However, the dictionaries represented by the kLocal Nunber Di cti onary,
kMoneyOnl yDi cti onary, and kNurrber sOnl yDi ct i onar y constants may
vary according to the user’s locale. For information on locales, see Newton
Programmer’s Guide Chapter 20, “Localizing Newton Applications.”

Table 8-5 System-supplied lexical dictionaries

Dictionary ID (constant) Value Contents

kLocal Dat eDi cti onary 110 Date formats

kLocal Nunber Di cti onary?! 113 Currency and numeric formats
kLocal PhoneDi cti onary 112 Phone number formats
kLocal Ti meDi cti onary 111 Time formats

kMoneyOnl yDi cti onary! 118 Currency values and formats
kNumber sOnl yDi ctionary! 117 Numeric values and formats
kPost al CodeDi cti onary 116 Postal code formats

! Locale-specific dictionary

Note

Although these constants currently evaluate to integers, do
not rely on the integer values. Use only the appropriate
constant names to reference these dictionaries. O

Recognition Configuration Frames

Recognition configuration frames (r ecConf i g frames) provide an alternate
interface to the recognition system. They can be used to provide any

Recognition System Data Structures 8-17

8-18

CHAPTER 8

Recognition System Reference

behavior that view flags provide, to supplement behavior provided by view
flags, or to provide specialized recognition behaviors that view flags cannot.
The use of ar ecConf i g frame is required to support ink text, specify
baseline information, perform deferred recognition, and define grids of
single-letter input areas within a view.

For descriptions of the slots and methods in r ecConf i g frames, see
“protoRecConfig” on page 8-36.

System-Supplied recConfig Frames

You can base your view’s r ecConf i g frame on one of the system-supplied
r ecConf i g frames described in this section.

The r ecConf i g frames supplied by the constants ROM r ¢l nkOr Text,
ROM r cPr ef sConf i g, and ROM r cRer ecogni zeConf i g require no
modification to produce useful behavior. You must provide appropriate
initial values for some slots in the r ecConf i g frames supplied by the
ROM r cDef aul t Confi g, ROM r ¢cSi ngl eChar act er Confi g, and
ROM rcTrylLett er sConfi g constants.

For information regarding the use of the constants described in this section,
see the following sections in Newton Programmer’s Guide: “Creating a
recConfig Frame” (page 10-9) and “Changing Recognition Behavior
Dynamically” (page 10-17).

ROM r ¢l nkOr Text
This general-purpose r ecConf i g frame can be used as
it is for views that accept text input. It allows the user to
turn on text recognition only; when text recognition is
disabled, the system returns ink text to the view. This
recConf i g frame is generally used with a
pr ot oRecToggl e view to allow the user to specify
whether the view displays ink text or normal text. The
ROM r cl nkOr Text frame provides the following slots.
al | owText Recogni ti on
Default value of t r ue allows user to
enable the text recognizer from an
associated r ecToggl e view. See the

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

description of the
al | owText Recogni ti on slot
(page 8-37) for more information.
dol nkWor dRecogni ti on
Default value of t r ue enables recognition
of input as ink text when text recognizer
is off. See the description of the
dol nkWor dRecogni ti on slot on
page 8-38 for more information.

ROM r cPref sConfi g
This frame can be used as is to configure views for
performing recognition according to user preference
settings. Views that have recognition behavior based on
this frame permit the user to enable or disable any
recognizer for which the system provides a user
interface. The default recognition behavior of views that
set the vAnyt hi ngAl | owed mask is based on this
frame.

Note

The ROM_r cPr ef sConf i g frame does not specify an input
mask, forcing the system to build one using settings
specified in user preferences. O

The ROM r cPr ef sConf i g frame provides the
following slots:

al | owText Recogni tion
Default value of t r ue allows the user to
enable the text recognizer from an
associated pr ot oRecToggl e view. See
the description of the
al | owText Recogni ti on slot
(page 8-37) for more information.

al | owShapeRecogni ti on
Default value of t r ue allows the user to
enable the shape recognizer from an
associated pr ot oRecToggl e view. See

Recognition System Data Structures 8-19

CHAPTER 8

Recognition System Reference

the description of the
al | owShapeRecogni ti on slot on
page 8-37 for more information.

ROM r cDef aul t Confi g
The ROM r cDef aul t Conf i g frame can be used as a
prototype for a generic r ecConf i g frame; it provides a
useful set of slots for which you must supply values.
This frame provides the following slots:

punct uati onCursi veOpti on
A value of t r ue specifies that the view
recognizes punctuation marks. This frame
supplies a default value of ni | .

dictionaries
The list of dictionaries to use for
recognition. This slot holds an array of
dictionary identifiers, a single dictionary
identifier, or the value ni | . This frame
supplies a default value of ni | . For more
information, see the description of the
di cti onari es slot in the section “Using
Your RAM-Based Custom Dictionary”
(page 10-28) in Newton Programmer’s Guide.

rcSingl eLetters
A value of t r ue specifies that the view
recognizes single letters only, rather than
dictionary words. This frame supplies a
default value of ni | .

rcBasel nfo
Holds an r cBasel nf o frame, which
describes the coordinates of an editable
view having known baselines. This frame
supplies a default value of ni | . For more
information, see “rcBaselnfo” beginning
on page 8-25.

i nput Mask A bit field specifying the configuration of
the recognition system for this view. This
frame supplies a default value of zero

8-20 Recognition System Data Structures

CHAPTER 8

Recognition System Reference

(0x0000). For more information, see
“View Flags for Recognition” beginning
on page 8-6.

ROM r cSi ngl eCharact er Confi g
This frame can be used as it is to configure recognition
in views accepting single-character input. For example,
you can use this frame to configure the entry fields in a
crossword puzzle or the entry fields in a
single-character corrector view similar to the
pr ot oChar Edi t system prototype. For an example of
the use of this prototype, see “Creating Single-Letter
Input Views” (page 10-15) in Newton Programmer’s Guide.

The ROM r ¢Si ngl eChar act er Conf i g frame
provides the following slots:

_proto

The default value of this slot is

ROM_r cDef aul t Conf i g. Do not change
the value of this slot. For more
information regarding slots that this
frame acquires through prototype
inheritance, see the description of the
ROM r cDef aul t Confi g constant
beginning on page 8-20.

| etter SpaceCursiveOption

Indicates whether the recognition system
segments strokes into groups by
interpreting spatial and temporal cues.
The default value of ni | specifies that the
system performs no segmentation, which
is appropriate for a field in which all
strokes are to be interpreted as a single
word.

rcSingl eLetters

Recognition System Data Structures

The default value of t r ue indicates that
the text recognizer is to recognize single
letters rather than dictionary words.

8-21

CHAPTER 8

Recognition System Reference

i nput Mask This view’s input mask. The default value

of vCust onDi cti onari es indicates that
the view uses the dictionaries specified in
the view’s di cti onari es slot. For more
information, see the description of the

di ctionari es slot in the section “Using
Your RAM-Based Custom Dictionary”
(page 10-28) in Newton Programmer’s Guide.

dictionaries

The default value of

kSynbol sDi cti onary specifies that this
view uses the system-supplied symbols
dictionary for recognition. The symbols
dictionary is used to recognize single
alphanumeric characters, punctuation
marks, mathematical symbols, diacritical
marks, and so on.

i nhi bi t Synbol sDi ctionary

ROM rcTryLettersConfig

The default value of t r ue specifies that
the system is not to use the symbols
dictionary in addition to the specified
dictionaries. (To do so would be
redundant: the symbols dictionary is
already enabled by this frame’s

di ctionari es slot.)

This frame can be used as it is to configure a view for
recognizing alphanumeric character combinations that
do not appear in available dictionaries; it is intended for
use by views that implement their own form of deferred
recognition. For example, the system uses this

r ecConf i g frame when the user chooses the Try
Letters item from the picker displayed as the result of
double-tapping a word previously recognized by the
cursive recognizer.

8-22 Recognition System Data Structures

CHAPTER 8

Recognition System Reference

_proto

The default value of this slot is
ROM r cDef aul t Confi g. For more
information regarding slots that this
frame acquires through prototype
inheritance, see the description of the
ROM r cDef aul t Confi g constant
beginning on page 8-20.

| etterSpaceCursiveOption

i nput Mask

ROM r cRer ecogni zeConfi g

Indicates whether the recognition system
segments strokes into groups by
interpreting spatial and temporal cues.
The default value of ni | specifies that the
system performs no segmentation, which
is appropriate for a field in which all
strokes are to be interpreted as a single
word.

The default value of

viettersAl | owed+vNunber sAl | owned
configures this view to recognize
non-dictionary words and numbers. See
the descriptions of these flags (page 8-6)
for more information. For information
regarding the use of the NewtonScript
plus (+) operator to combine view flags,
see “Combining View Flags” (page 9-26)
in Newton Programmer’s Guide.

This frame can be used as it is by views that implement
their own form of deferred recognition. It builds an
input mask from user preference settings and the
settings of an associated r ecToggl e view.

al | owText Recogni tion

Recognition System Data Structures

Default value of t r ue causes the value of
the doText Recogni t i on slot to be used.
See the description of the

al | owText Recogni ti on slot

(page 8-37) for more information.

8-23

8-24

CHAPTER 8

Recognition System Reference

doText Recogni ti on

The default value t r ue enables word
recognition in the view that this

r ecConf i g frame controls. For more
information, see the pr ot oRecConfi g
section’s description of this slot on
page 8-37.

speedCur si veOpt i on

The amount of time the cursive recognizer
spends recognizing input. This frame
provides a default value of 2. For more
information see the pr ot oRecConfi g
section’s description of this slot on

page 8-39.

| etterSpaceCursiveOption

ROM canoni cal Basel nfo

Indicates whether the recognition system
uses spatial and temporal cues to segment
strokes into groups. The default value of
ni | specifies that the system performs no
segmentation, which is appropriate for a
field in which all strokes are to be
interpreted as a single word.

System-supplied r cBasel nf o frame. Clone this frame
into your r ecConf i g frame’s r cBasel nf o slot.

ROM canoni cal CharGri d

System-supplied r cGri dI nf o frame. Clone this frame
into your r ecConf i g frame’s r cGi dl nf o slot.

Data Structures Used in recConfig Frames

The system-supplied r cBasel nf o and r cGr i dI nf 0 frames are used within
recConf i g frames to define baseline information and grids of single-letter

input views, respectively.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

rcBaselnfo

This frame specifies to the recognizer precisely where characters are written
with respect to a well-defined baseline in a view. The r cBasel nf o frame is
especially valuable in improving the recognition of single letters or letter-size
values, for which it is sometimes difficult to derive baseline information from
user input alone. For example, without adequate baseline information it is
difficult to distinguish between an upper-case letter P and a lower-case letter

p.
Figure 8-1 depicts the editing box that an r cBasel nf o frame defines.

Figure 8-1 Single-character editing box specified by r cBasel nf o frame
bigHeight
'IE' ___________ : 1 sma L1H =i ght
bas= |] B

gy desoent

The r cBasel nf o frame has the following slots:

Slot descriptions

base The Y coordinate of the view’s baseline, expressed in
screen coordinates (global coordinates).

smal | Hei ght Positive offset, expressed in pixels, from base to the top
of a lowercase x. Set to ni | if you aren’t sure what value
this slot should have.

bi gHei ght Positive offset, expressed in pixels, from base to the top
of an uppercase X. Set to ni | if you aren’t sure what
value this slot should have.

Recognition System Data Structures 8-25

8-26

CHAPTER 8

Recognition System Reference

descent Positive offset, expressed in pixels, from base to the
bottom of a lowercase g. Set to ni | if you aren’t sure
what value this slot should have.

If you aren’t sure of appropriate values for the smal | Hei ght, bi gHei ght,
or descent slots, it’s better to set them to ni | than to provide inaccurate
values. In general, you shouldn’t specify these values unless there is a visible
guideline on the screen with which the user can align handwritten input.

Note

If the user can drag the view around on the screen, you'll
need to offset the value of the base slot when the view
is moved. O

rcGridInfo

You can use the r cGri dI nf o frame in conjunction with an r cBasel nf o
frame to define to the recognizer the position of a single letter input area
within a specified view. The r cGr i dI nf o frame can be used to define a
single box, a horizontal array of boxes, a vertical array of boxes, or a
two-dimensional array of boxes. For example, the system-supplied

prot oChar Edi t prototype uses anr cG i dl nf o frame to define the cells of
the comb view it provides.

If you provide a grid in which the user is to write characters or words, you
need touse anr cG i dl nf o frame to define the grid to the text recognizer.
The recognizer requires the information in anr ¢G i dl nf o frame in order to
make character-segmentation decisions.

Figure 8-2 depicts the grid—the two-dimensional array of boxes—that an
rcG i dl nf o frame can define.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Figure 8-2 Two-dimensional array of input boxes specified by

rcGidl nf o frame

- rapace

The r cG i dI nf o frame has the following slots:

Slot descriptions

boxLef t The global (screen) coordinate of the left edge of the
top-left box.

boxRi ght The global (screen) coordinate of the right edge of the
top-left box.

XxSpace The distance from one boxLef t coordinate to the next
boxLeft coordinate.

boxTop The global (screen) coordinate of the topmost edge of
the top-left box.

boxBot t om The global (screen) coordinate of the bottom edge of the
top-left box.

ySpace The distance from one boxTop coordinate to the next
boxTop coordinate.

Recognition System Data Structures 8-27

8-28

CHAPTER 8

Recognition System Reference

The definition of a horizontal array requires the presence of the boxLef t,
boxRi ght, and xSpace slots. The definition of a vertical array requires the
presence of the boxTop, boxBot t om and ySpace slots. The definition of a
two-dimensional array requires that all six slots be defined.

Note

If the user can drag the view around on the screen, you'll
need to offset the values of the boxLef t , boxRi ght,
boxTop, and boxBot t omslots when the view is moved. O

Stroke Bundle Data Structures

This section describes the data structures that you can use to work with
stroke bundles.

The Stroke Bundle Frame

The stroke bundle frame describes the point data from an input stroke drawn
on the Newton tablet. This frame contains the following slots:

Slot descriptions

bounds The bounding rectangle for the ink strokes in the bundle.

strokes An array with one element for each stroke in the
bundle. Each element is a binary object containing tablet
resolution data.

Format Specification Values for Stroke Bundle Functions

Several stroke bundle functions use a format specification to determine the
resolution of point data. Some functions also use this format specification to
determine whether or not to copy duplicate point values. The format
specification values are shown in Table 8-6.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Table 8-6 Stroke bundle data format specifications

Value Description

0 Data in screen resolution. Filter out duplicate points.

1 Data in screen resolution. Duplicate points are allowed.
2 Data in tablet resolution. Filter out duplicate points.

3 Data in tablet resolution. Duplicate points are allowed.

Note

Points are stored in a compressed format that is based on
screen resolution. O

Filtering of duplicate points is irrelevant for several stroke bundle functions.
These functions use screen resolution if you supply a filter value of 0 or 1,
and tablet resolution if you supply a filter value of 2 or 3. For example, the
Cet St r okePoi nt function (page 8-85) retrieves a specific point from a
stroke bundle, and needs to know only the resolution in which to return that
point.

Stroke, Word, and Gesture Units

The Newton recognition system uses stroke units to describe information
about pen input. You cannot examine a stroke unit directly, but some stroke
bundle and recognition functions accept this object type as an argument. The
system passes stroke units to the optional Vi ewSt r okeScr i pt method of a
view that performs recognition.

The Newton recognition system also uses other units. These include word
units, which are passed to a view’s optional Vi ewr dScr i pt method, and
gesture units, which are passed to a view’s optional Vi ewGest ur eScr i pt
method.

For more information about stroke, word, and gesture units, as well as the
application-defined view methods that use them, see “Customized
Processing of Input Strokes” (page 10-40) in Newton Programmer’s Guide.

Recognition System Data Structures 8-29

8-30

CHAPTER 8

Recognition System Reference

Point Arrays

Several of the stroke bundle functions use or return point arrays. This is a
single array of coordinate values, with alternating y and x coordinates.

Note that the first value in each pair is the y coordinate value, followed by
the x coordinate value.

The point array structure is the same structure type that is returned by the
Get Poi nt sArr ay function, described on page 8-81.

Correctinfo Frame

This frame, which contains correction information for recently recognized
words, is returned by the Get Cor r ect | nf o global function (page 8-56). For
descriptions of the slots and methods in this frame, see “protoCorrectInfo”
on page 8-53.

WordInfo Frame

This frame contains stroke data, correction information, and learning data for
a single written word interpreted by the text recognizer. An array of

wor dI nf o frames representing recently recognized words is held by the

i nf o slot of the cor r ect | nf o frame. Individual wor dI nf o frames may
also be extracted from word units passed to the optional Vi ewWr dScr i pt
method of the view performing text recognition. For descriptions of the slots
and methods in this frame, see “protoWordInfo” on page 8-60.

Wordinterp Frame

This frame represents a single interpretation of input strokes returned by the
text recognizer. An array of wor dl nt er p frames resides in the wor dI nf o
frame’s wor ds slot. For descriptions of the slots in this frame, see
“protoWordInterp” on page 8-63.

Recognition System Data Structures

CHAPTER 8

Recognition System Reference

Recognition System Prototypes

This section describes protos used to configure the recognition system or
provide a user interface to it.

protoRecToggle

The pr ot oRecToggl e system prototype provides a picker that controls
recognition in an associated view. This prototype is intended for use with
views that set the vAnyt hi ngAl | owed mask.

This proto changes the recognition behavior of a view that allows recognition
of various kinds of input. For example, the built-in Notepad application
provides a pr ot oRecToggl e view that allows the user to change the
recognition behavior of note views. Another common use of this proto is to
facilitate changing between text recognition and ink text in an input view
that supports both kinds of text.

The pr ot oRecToggl e view is designed to be added as a child of a status
bar view based on the pr ot oSt at us proto. When used in this way, the
recToggl e view is positioned on the status bar automatically, and the value
of its vi ewBounds slot is ignored. For example, the built-in Notepad
application positions this view immediately to the right of the

pr ot ol nf oBut t on view on the status bar.

When collapsed, the pr ot oRecToggl e view’s appearance reflects the
current configuration of the recognition system for the view that it controls.
Figure 8-3 shows the pr ot oRecToggl e picker (popup menu) as it appears
when collapsed and when expanded.

Recognition System Prototypes 8-31

CHAPTER 8

Recognition System Reference

Figure 8-3 pr ot oRecToggl e picker collapsed and expanded

8-32

You can cause this view to display only those items that are appropriate for
your application. For example, applications having only text entry fields
typically display only the Text and Ink Text items. On the other hand,
applications like the built-in Notepad have views that allow several different
types of recognition within the note, and so display additional items in this
picker. For more information, see the description of the _r ecogPopup slot,
later in this section.

Applications that use a pr ot oRecToggl e view must provide a
_recogSet tings slot. When your application closes, it can save the
contents of this slot and restore it the next time your application opens,
thereby restoring the state of the r ecToggl e view.

The pr ot oRecToggl e prototype provides the following slots of interest to
developers:

Slot descriptions

_recogSettings Required; holds the current setting of the
pr ot oRecToggl e view. When your application closes,
it can save the value of this slot for use in restoring the
state of the pr ot oRecToggl e view when the
application opens again.

This slot may appear anywhere in the _par ent chain of
the view that the r ecToggl e controls. For more
information, see “Creating the _recogSettings Slot”
(page 10-20) in Newton Programmer’s Guide.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

defaul t1tem

_recogPopup

Optional; an integer value specifying the element of the
_recogPopup array to be used as the r ecToggl e
view’s default setting. If this slot is missing or nil, the
first element of the _r ecogPopup array specifies the
default setting.

Optional; an array of symbols specifying the items to be
included in the pr ot oRecToggl e picker. If this slot is
missing or ni |, all items specified in the _r ecogPopup
slot of the r ecToggl e view’s template are included in
the picker. The first item in this array is the default
setting for the r ecToggl e button.

The default _r ecogPopup slot provided by the
pr ot oRecToggl e system prototype contains the array
shown in the following code fragment:

_recogPopup: [

"recogText, [l "Text"

"recogl nkText [l "Ink Text"

' pi ckSepar at or, N
' recogShapes, /1 "Shapes"

' recogSket ches, /1l "Sketches"

' pi ckSepar at or, N

‘recToggl eSettings, [/ "Preferences"

1.

Your _r ecogPopup slot can contain any combination
or subset of these symbols, in any order.

The next several paragraphs describe each of the
symbols that may appear in the _r ecogPopup array.

'recogText
Specifies that the Text item is to appear in
the r ecToggl e picker. When this item is
chosen, it enables text recognition as
specified by any view flags, r ecConfi g

Recognition System Prototypes 8-33

CHAPTER 8

Recognition System Reference

8-34 Recognition System Prototypes

frame, or user preference settings that
apply to the view controlled by the
recToggl e view. In views that set the
vAnyt hi ngAl | owed mask, this item
enables the recognition of words,
numbers, dates, times, and letters. For all
views controlled by this item,
unrecognized words are returned as ink
text if the view supports ink text.

recogl nkText

Specifies that the Ink Text item is to
appear in the r ecToggl e picker. When
this item is chosen, written words are
returned as unrecognized ink text.

r ecogShapes

Specifies that the Shapes item is to appear
in the r ecToggl e picker. When this item
is chosen, it enables shape recognition for
the view that the r ecToggl e view
controls and causes unrecognized shapes
to be returned as sketch ink.

recogSket ches

Specifies that the Sketches item is to
appear in the r ecToggl e picker. When
this item is chosen, it disables recognition
of text and shapes, causing input to be
returned as sketch ink.

pi cksepar at or

Specifies that an unselectable dotted line
is to appear in the r ecToggl e picker at
the position corresponding to this array

element.

recToggl eSet ti ngs

Specifies that the Preferences item is to
appear in the r ecToggl e picker. When
this item is chosen, it causes the system to
display the Handwriting Recognition

CHAPTER 8

Recognition System Reference

preferences slip. Simply displaying the
slip does not change any preferences.

Application-Defined recToggle Methods

The current system supports only one application-defined r ecToggl e view
method, the RecogSet t i ngsChanged method, which is described here.

RecogSettingsChanged

view: RecogSet t i ngsChanged(viewFlags)

This application-defined method provides a means of taking
application-specific action in response to changes in the setting of an
associated r ecToggl e view. This message is sent when the r ecToggl e
picker changes if this method is defined in the r ecToggl e view or
anywhere in its _par ent chain.

Edit views that set the vAnyt hi ngAl | owed mask set use the new
recognition settings automatically when this message is sent. Other kinds of
views may need to take appropriate action themselves. This message is sent
tosel f (which usually evaluates to the r ecToggl e view), relying on parent
inheritance for appropriate dispatch. Therefore, your implementation of this
method must confine its actions to appropriate local changes only.

Typically, your RecogSet t i ngsChanged method must add the value of the
viewFlags parameter to any other appropriate nonrecognition view flags and
place the resulting value in the vi ewF| ags slot of any view that must
respond to the change in the r ecToggl e view’s state. The new settings are
used automatically because when the r ecToggl e picker changes, the
system calls the Pur geAr eaCache function before sending the

RecogSet t i ngsChanged message.

viewFlags The current set of view flags to be used by the
associated view for recognition. This value is passed to
your RecogSet t i ngsChanged method by the system.
Note that this value does not include view flags
unrelated to recognition, although the proper operation
of the view may require them.

Recognition System Prototypes 8-35

CHAPTER 8

Recognition System Reference

The system sets the value of the viewFlags parameter as follows:

s If the Text or Ink Text item was chosen in the r ecToggl e picker, then the
value of the viewFlags parameter is set to vChar sAl | owed plus additional
text recognition flags as appropriate.

» If the Shapes item was chosen in the r ecToggl e picker, then the value of
the viewFlags parameter is set to vShapesAl | owed.

s If the Sketches item was chosen in the r ecToggl e picker, then the value
of the viewFlags parameter is set to O.

protoRecConfig

This prototype may be used to configure the recognition system when a
particular configuration is not available through the use of view flags. It is
also used to support features such as ink text and specialized behavior such
as limiting the set of characters recognized by a view.

Your view’s r ecConf i g frame may be based on this proto or on one of the
system-supplied r ecConf i g frames (all of which are also based on this
proto) described in “System-Supplied recConfig Frames” (page 8-18).

The value of the following slot affects the input mask that the view
constructs:

Input mask slots

i nput Mask Required. The bit field that controls the view’s
recognition behavior. The recognition portion of the
view’s vi ewFl ags slot should be set to the same value
as the i nput Mask slot in the r ecConf i g frame. There
is one exception to this rule: to enable ink text, you can
put the system-supplied r ecConf i g frame
ROM r cl nkOr Text in your view’s r ecConf i g slot,
leaving everything else the same.

The values of the following slots specify the choices that an associated
pr ot oRecToggl e view provides to the user:

8-36 Recognition System Prototypes

CHAPTER 8

Recognition System Reference

recToggle configuration slots

al | owText Recogni ti on
A value of t r ue specifies that text recognition is
enabled when the value of the doText Recogni ti on
slot in the system’s user configuration dataist r ue.
(The system sets the doText Recogni ti on user
configuration slot to t r ue when the user chooses the
Text item from the associated r ecToggl e picker.) You
might set this value to implement deferred recognition
in a view that disables text recognition. User preferences
not related to recognizer settings are not affected by the
value of this slot.

al | owShapeRecogni tion
A value of t r ue specifies that shape recognition is
enabled when the value of the doShapeRecogni ti on
slot in the system’s user configuration datais t r ue.
(The system sets the doShapeRecogni t i on user
configuration slot to t r ue when the user chooses the
Shapes item from the associated r ecToggl e picker.)
User preferences not related to recognizer settings are
not affected by the value of this slot.

The values of the following slots (or their inherited values) enable the use of
a particular recognizer in views that set the vAnyt hi ngAl | owed mask.
Note that these slots are used rarely; normally, the bits in the vi ewFl ags
slot control the view’s recognition behavior. The values of these slots can be
used to override values inherited from system-wide settings or an associated
r ecToggl e view. These slots enable specified recognizers unconditionally—
as opposed to the al | owXxxRecogni ti on slots, which enable a specified
recognizer only when the appropriate slot in user configuration data holds
the value t r ue.)

Recognizer configuration slots

doText Recogni ti on
The value t r ue enables word recognition in the view
that this r ecConf i g frame controls. This slot is usually

Recognition System Prototypes 8-37

CHAPTER 8

Recognition System Reference

used only with views that set the vAnyt hi ngAl | owed
mask. When the user turns on text recognition from the
pr ot oRecToggl e view associated with the view this

r ecConf i g frame controls, the system sets the value of
the doText Recogni t i on slot in the system’s user
configuration data to t r ue. This r ecConf i g slot can be
used to override values inherited from a

pr ot oRecToggl e view or user configuration settings.

doShapeRecogni ti on
The value t r ue enables shape recognition in the view
that this r ecConf i g frame controls. This slot is usually
used only with views that set the vAnyt hi ngAl | owed
mask. When the user turns on shape recognition from
the pr ot oRecToggl e view associated with the view
this r ecConf i g frame controls, the system sets the
value of the doShapeRecogni t i on slot in the system’s
user configuration data to t r ue. This r ecConf i g slot
can be used to override values inherited from a
pr ot oRecToggl e view or user configuration settings.

dol nkWor dRecogni ti on
The value t r ue causes the recognizer to convert strokes
to ink text rather than sketch ink. If the value of this slot
isni | or the slot is absent, the view turns unrecognized
ink into sketch ink. When the user turns on text or ink
text recognition from the pr ot oRecToggl e view
associated with the view this r ecConf i g frame
controls, the system sets the value of the
dol nkWor dRecogni ti on slot in the system’s user
configuration data to t r ue. This r ecConf i g slot can be
used to override values inherited from a
pr ot oRecToggl e view or user configuration settings.
Note that the system may also return ink text to the
view when the text recognizer cannot recognize the
input successfully or when text and shape recognition
are both disabled.

8-38 Recognition System Prototypes

CHAPTER 8

Recognition System Reference

Do not attempt to include | et t er Set Sel ecti on or
| ear ni ngEnabl edOpt i on slots in your r ecConf i g frame, for the
following reasons:

= The text recognizer (printed or cursive) made available to all views is
determined by the value of the | et t er Set Sel ect i on slot in the
system’s user configuration data. Individual views cannot override this
system-wide setting.

= The system’s ability to save learning data is enabled by the value of the
| ear ni ngEnabl edQpt i on slot in the system’s user configuration data.
Individual views cannot override this system-wide setting.

The following slots modify the behavior of the text recognizer:

Text recognizer configuration slots

speedCur si veQpti on
This value affects the amount of time the cursive
recognizer spends analyzing input. This value does not
affect the printed recognizer. The user's preference (set
by a slider in the Fine Tuning preferences slip) is used as
the default value of this slot. This value ranges from 0 to
9, with 0 representing the slowest and most accurate
recognition, and 9 representing the fastest and least
accurate recognition.

Note

These slots are not guaranteed to affect all recognizers
available in future versions of the system. O

ti meout Cur si veQOpti on
This value affects the amount of time the recognizer
waits from the completion of a stroke for subsequent
strokes that might belong to the same character, word or
shape. The value of this slot is a delay expressed in ticks
(60ths of a second). The “Transform my handwriting”
slider in the Fine Tuning user preferences slip sets
values for this slot ranging from 15 ticks (.25 second) to

Recognition System Prototypes 8-39

CHAPTER 8

Recognition System Reference

60 ticks (1 second). Your view can use larger or smaller
values, although it is not recommended.

| etterSpaceCursiveOption
The value of this slot affects the amount of horizontal
space required to consider sets of strokes as belonging
to separate letters or words. The user's preference (set
by a slider in the Handwriting Recognition preferences
slip), is used as the default value of this slot. This value
ranges from 0 to 9, with 0 representing widely spaced
words or characters, and 9 representing closely spaced
words or characters. If the value of this slot is ni | , the
recognizer performs no segmentation.

The following slots affect the view’s use of dictionaries for recognition.

Dictionary configuration slots

dictionaries Specifies custom dictionaries to be used by the view.
This slot may contain a single dictionary identifier or an
array of dictionary identifiers. When this slot is present,
the view’s di cti onar i es slot is ignored. Although not
always necessary, it is still a good idea to set the
vCust onDi cti onari es bitin ther ecConfi g frame’s
i nput Mask slot when the r ecConf i g frame provides
adictionari es slot.

rcSingl eLetters
Set the value of this slot to t r ue for a view that is to
recognize only single letters. For example, this feature
would be useful in a corrector view, in a crossword
puzzle view, or when letters in a previously recognized
word are overwritten. Note that you still need to
provide a dictionary—in this case, one having entries
that are single letters.

i nhi bit Symbol sDi ctionary
Set the value of this slot to t r ue when the symbols
dictionary is not to be included in the set of dictionaries

8-40 Recognition System Prototypes

CHAPTER 8

Recognition System Reference

used by the view for text recognition. The symbols
dictionary contains single letters, punctuation marks,
and miscellaneous characters, and is normally enabled.
It is used by the recognition system when the user
overwrites single characters in a misrecognized word.

protoCharEdit

The pr ot oChar Edi t system prototype provides a comb-style entry view in
which the user can edit text. The recognition system uses this proto as a
means of allowing the user to correct single letters in a misrecognized word.
The pr ot oChar Edi t system prototype is shown in Figure 8-4.

Figure 8-4 Typical pr ot oChar Edi t comb view and text to correct

ihieisity 1

In a pr ot oChar Edi t view, each character position that can be edited has a
dotted line beneath it to indicate that it can be changed. The user can edit a
character by overwriting it, causing the recognized value of the new
character to be displayed in that position. When the user taps a cell in the
comb view, it displays a picker containing alternate interpretations of the
strokes which produced the character occupying that cell.

The user can delete one or more characters with the scrub gesture.
Alternatively, the user can delete an individual character by tapping it and
selecting the Delete item from the alternate interpretations picker that the
comb view displays.

The user can insert a space for a new character with the caret gesture.
Alternatively, the user can insert a space by tapping the position that the
space is to occupy in the comb view and selecting the Insert item from the
alternate interpretations picker that the comb view displays.

Recognition System Prototypes 8-41

8-42

CHAPTER 8

Recognition System Reference

In addition to these gestures, the user can tap any blank space to display a
list of punctuation marks that may be inserted at that position.

The comb view provided by the pr ot oChar Edi t view may be formatted or
unformatted. In unformatted comb views, the word in the comb is of
variable length. The user can delete any character, or insert new spaces
anywhere. When a character is deleted, the surrounding characters move to
close up the space formerly occupied by the deleted character. Although
unformatted comb views usually accept any characters as input, it is possible
to restrict input to a specified set of characters.

Words displayed in formatted comb views are restricted to a fixed length,
and inserting additional characters is not allowed. Scrubbing characters in a
formatted comb view clears them rather than deletes them; that is, the
scrubbed character is replaced by a space. The set of characters recognized in
each position may be restricted to a specified set. For example, a

prot oChar Edi t view that holds a phone number is likely to restrict to
numeric values the set of characters it returns.

The pr ot oChar Edi t prototype provides the following slots of interest to
application developers. These slots are normally defined in your view
template, used during initialization, and not changed subsequently:

Slot descriptions

top The screen coordinates of the top edge of the comb
view; required when no vi ewBounds value is
provided. If you provide the value of the t op slot, you
must also provide values for the maxChar s and | ef t
slots.

left The screen coordinates of the left edge of the comb
view; required when no vi ewBounds value is
provided. If you provide the value of the | ef t slot, you
must also provide values for the maxChar s and t op
slots.

vi ewBounds A standard vi ewBounds frame that specifies the
dimensions of the comb view; required when the t op

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

and | ef t values are not provided. If you provide the
value of the vi ewBounds slot, the system provides the
value of the maxChar s slot for you.

maxChar s The number of character positions to display in the
comb view. The default value is 8. If you specify the
values of the t op and | ef t slots, then you'll also need
to specify the value of the maxChar s slot. If instead you
specify the value of the vi ewBounds slot, the value of
the maxChar s slot is calculated for you, based on the
width of the view. In formatted comb views, the value
of maxChar s cannot be greater than the maximum
number of characters allowed by the template.

frameCel | s Optional. The value t r ue specifies that the comb view
displays gray divider lines between cells. The default
valueis ni | .

cel | Wdth The width of each cell in the comb view, expressed in

pixels. This value must be an even number. The default
value is 24. If you specify the values of the t op and

| ef t slots, then the width of the view is calculated as
the value (cel | W dt h* naxChar s) +1, and is set for
you.

cel | Gap The number of pixels of blank space between cells in the
comb view. This value must be an even number. The
default value is 6. This value is used for drawing the
cells and for determining the cells covered by a scrub
gesture.

vi ewLi neSpaci ng
The distance in pixels from the top of the vi ewBounds

to the dotted line on which the user enters written
input. The default value is 30.

cel | Hei ght The total height of the cell, expressed in pixels. The
default value is 50. If you specify the values of the t op
and | ef t slots, then the height of the view as expressed

Recognition System Prototypes 8-43

8-44

CHAPTER 8

Recognition System Reference

recConfig

templ ate

t ext

wor dLef t

wor dRi ght

di spLeft

by its vi ewBounds value is set to the value of the

cel | Hei ght slot. If you specify the value of the

vi ewBounds slot explicitly, the value of the

cel | Hei ght slot is set to the height expressed by the
value of the vi ewBounds slot.

The recognition configuration frame that specifies the
recognition behavior of the comb view. The same
recognition setting is used for all cells in the comb view.
The default r ecConf i g frame supplied as the value of
this slot allows all standard characters to be recognized.
To improve the speed and accuracy of a numbers-only
comb view, you could change the r ecConf i g frame in
this slot appropriately. (For example, you might supply
a custom dictionary containing only those digits that
represent valid values.) If you change the value of this
slot, you must ensure that the Vi ewSet upDoneScr i pt
method of the view is invoked afterward.

Optional frame used to customize the appearance and
behavior of the comb view. For more information, see
the section “Template Used by ProtoCharEdit Views”
beginning on page 8-45.

The string to be displayed in the comb view. Initially,
this slot contains the string to be displayed; after the

Vi ewSet upFor nScr i pt method executes, this string
may contain leading and trailing spaces.

The index of the leftmost character in the comb view
that is not a space.

The index of the cell to the right of the rightmost
character in the comb view that is not a space.

In the t ext slot, the index of the character occupying
the leftmost position in the comb view. The di spLeft

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

di spl ndent

slot normally has the value 0, but after scrolling it may
have values greater than zero.

The offset from the leftmost edge of the comb view to
the leftmost edge of the first character position
displayed, expressed in pixels.

Template Used by ProtoCharEdit Views

System-supplied templates for restricting input in pr ot oChar Edi t views to
numbers, dates, phone numbers or times are described in “System-Supplied
protoCharEdit Templates” beginning on page 8-46.

The optional template residing in your pr ot oChar Edi t view’s template
slot is a frame that may contain the following slots:

Slot descriptions
filters

f or mat

Required when a f or mat slot is provided. An array of
one or more strings specifying characters that may be
entered in cells of the pr ot oChar Edi t view. If your
template does not provide a f or mat slot, this array
holds a single element that filters input for all cells in
the pr ot oChar Edi t view. If you provide a f or nat
slot, this array can contain multiple elements. The

f or mat slot specifies indexes into this array that
associate cells in the pr ot oChar Edi t view with
elements of this array.

Optional. A string having one character for each
position in the pr ot oChar Edi t view. Each ordinal
position in this string specifies an index into the
filters array to define permissible input in the
corresponding ordinal position in the pr ot oChar Edi t
view; any position holding an underscore specifies that
the corresponding position in the pr ot oChar Edi t
view cannot be edited.

Recognition System Prototypes 8-45

8-46

CHAPTER 8

Recognition System Reference

t ext

Set upString

Cl eanupString

The presence of the f or mat slot specifies that the

pr ot oChar Edi t view is a formatted comb view: it
permits only a fixed number of characters; cells cannot
be inserted or deleted; and scrubbing clears a cell in the
comb rather than deleting it. If the f or mat slot is
missing or if its value is ni | , the comb field is an
unformatted comb view, like the corrector in the built-in
Notepad application.

If the template has a f or mat slot, then it must also
provideafilters slot.

Optional. This string is used by the Set upSt ri ng and
Cl eanupSt ri ng methods.

Optional method you supply that provides a string
value for the template’s t ext slot. For more
information, see this method’s description in
“Application-Defined protoCharEdit Template
Methods” beginning on page 8-52.

Optional method you provide that processes the string
obtained from the t ext slot before it is displayed in the
comb view. For more information, see this method’s
description in “Application-Defined protoCharEdit
Template Methods” beginning on page 8-52.

System-Supplied protoCharEdit Templates

This section describes system-supplied templates that can be used to filter
input in pr ot oChar Edi t views. Place the appropriate template in your

pr ot oChar Edi t view’s t enpl at e slot to restrict input to phone numbers,
dates, times, or numeric values in general.

Note that the specific templates provided for filtering dates, times, or phone
numbers may change according to the user’s locale.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

Phone Number Template

The template for phone numbers is stored in Get Local e() . phoneFi | ter.
This template lets the user enter phone numbers (excluding area code) in a
format acceptable for the current locale. The area code must be entered in a
separate input view.

Date Template

The template for dates is stored in Get Local e() . dat eFi | t er. This
template lets you enter a date in mm/ dd/ yy format, with the specific order of
these elements determined by the current locale bundle.

m A digit representing the month.
d A digit representing the day of the month.
y A digit representing the year.

Time Template

The template for times is stored in Get Local e() . ti meFi | t er. This
template lets you enter a time in HH: MM [AM PM format. For locales that
use 24-hour time, the format is simply HH: MM.

H A digit representing the hour.
M A digit representing the minute.

Number Template

A general-purpose numeric template is defined in ROM nunber Fi | t er.
This template allows the user to enter a variable length integer containing
only digits.

protoCharEdit Functions and Methods

The system provides the pr ot oChar Edi t functions and methods described
here. Additionally, you can provide the optional methods described in
“Application-Defined protoCharEdit Template Methods” on page 8-52, as

Recognition System Prototypes 8-47

8-48

CHAPTER 8

Recognition System Reference

well as the protoCharEdit template methods described in
“Application-Defined protoCharEdit Template Methods” on page 8-52.

GetWordForDisplay

charEditView: Get Wr dFor Di spl ay()

Returns a cleaned-up version of the string currently displayed by the comb
view.

This is the best method to invoke to obtain a readable version of the string
for external display—if the pr ot oChar Edi t view’s template defines a

C eanupSt ri ng method, this function uses it to further modify the string
returned by the Cur r ent Wor d method.

CurrentWord

charEditView: Cur r ent Wor d()

Returns the word currently displayed in the comb view, with leading and
trailing spaces removed. Because unformatted comb views may add leading
and trailing spaces to display strings, the string returned by this method may
not be precisely the same as that residing in the t ext slot of charEditView.

Always use this method or the Get Wor dFor Di spl ay function to retrieve
the text from the comb view. The difference between these routines is that the
Get Wor dFor Di spl ay function calls the associated template’s optional

C eanupSt ri ng method if it is provided.

DeleteText

charEditView: Del et eText (left, right)
Deletes the specified text from the comb view.

left The index of the leftmost character to be deleted. This
value may be obtained from the pr ot oChar Edi t
view’s wor dLef t slot.

right The index of the cell to the right of the rightmost
character to be deleted. This value may be obtained
from the pr ot oChar Edi t view’s wor dRi ght slot.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

Normally, text is deleted from a pr ot oChar Edi t view when the user scrubs
the text or chooses an item from the picker displayed when a character is
tapped. To clear the entire view programmatically, you can use the

Del et eText method as shown in the following code fragment.

view: Del et eText (view. wor dLeft, view. wordRi ght);

Scroll
charEditView: Scr ol | (direction)

Scrolls the comb view left or right as specified. This function returns the
value t r ue when scrolling occurs.

direction Integer indicating the direction to scroll. When this
value is greater than zero, characters to the right of
those currently displayed in the comb view are shown
as necessary. When this value is less than zero, the
display scrolls back to the beginning of the word (not to
the next chunk to the left), as necessary.

UseTextAndTemplate
charEditView: UseText AndTenpl at e()

Causes the comb view to use the current values of thet ext and t enpl at e
slots. Before using this method, you must set the pr ot oChar Edi t view’s
t ext andt enpl at e slots to their new values.

You can use this method to change the text or template used by the comb
view. It is not necessary to invoke this method when first opening the comb
view, as its Vi ewSet upFor nBScr i pt method provides equivalent
initialization.

To change an already open comb view’s text without changing its template,
invoke the Set NewWr d method, followed by the UseNewMor d method.
This approach provides better performance than the UseText AndTenpl at e
method does.

Recognition System Prototypes 8-49

8-50

CHAPTER 8

Recognition System Reference

SetNewWord

charEditView: Set Newwor d(str, nil)

Sets the string displayed in the comb view. This method is intended to be
called after the pr ot oChar Edi t view’s Vi ewSet upFor nScr i pt method
has executed. After calling this method, you must call the UseNewWor d
method to make the comb view display the new string.

Because the Set NewWr d method performs no reformatting, the string
passed as its argument must be of the appropriate length and format. For
example, you cannot clear a formatted comb view properly by passing ni |
as the value of the str parameter to this method.

For more information on clearing text from comb views, see the description
of the Del et eText method. To change both the text and the template used
by the comb view, call the UseText AndTenpl at e method instead of the
Set NewWor d method.

str The new text to be displayed. This string must not
contain leading or trailing spaces. If this string is to be
displayed in a formatted comb view, it must be of the
appropriate length and format—this method performs
no reformatting.

ni | For system use only; always set this value to ni | .

UseNewWord

charEditView: UseNewMor d()

Initializes the internal parameters of the pr ot oChar Edi t view as specified
by the current values of its t ext and t enpl at e slots. You must invoke this
method after using the Set NewMor d method to make the pr ot oChar Edi t
view use new values for the t ext ort enpl at e slots.

FixedWord

charEditView: Fi xedWor d()

Returns t r ue when the comb view’s t enpl at e slot holds a template that
has a non-ni | f or mat slot. When this function returns t r ue, characters are

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

cleared rather than deleted; when it returns f al se, leading and trailing
spaces are added to the displayed word, as necessary.

FixedWordLength
charEditView: Fi xedWor dLengt h()

Returns the number of characters in the template's f or mat slot. If this slot
does not specify a format (specifically, when the Fi xedWor d method returns
ni |) the Fi xedwWor dLengt h method returns ni | .

MapAmbiguousCharacters

MapAmbi guousChar act er s(str)

Replaces character codes for easily-misread glyphs (zero vs. letter O, numeric
value 1 vs. letter I) in the str string with character codes that map to more
readable glyphs.

IMPORTANT

This operation modifies the str argument directly. The

modified str object is intended for display use only. The rest

of the system is not notified of the modifications to this

object. Do not rely on the remapped character codes in

any way. a

str The string to modify; after this function returns, this
parameter holds the modified string.

UnmapAmbiguousCharacters

UnmapAmbi guousChar act er s(str)

Restores the str string modified by the MapAmbi guousChar act er s
function to its original, unmodified state.

str The string to unmap; after this function returns, this
parameter holds the restored string.

Recognition System Prototypes 8-51

8-52

CHAPTER 8

Recognition System Reference

Application-Defined protoCharEdit View Methods

This section describes the optional Di spl ayExt er nal and
SaveUndoSt at e methods that take application-specific action when the
user edits text in the comb view or undoes edits to comb view text.

DisplayExternal

charEditView: Di spl ayExt er nal (dolt)

This message is sent when the text in the comb view is edited, either by
overwriting a cell or by picking an alternate value from a cell's picker.
Applications that maintain an externally-displayed view of the comb view’s
contents can use this method to respond to changes in the comb view.

dolt When this value is ni |, you should not need to redraw.

SaveUndoState

charEditView: SaveUndoSt at e(appState)

Called by the system to save the state of the comb view for undo operations.
You can override this method to provide application-specific undo
information. Your override must call the inherited SaveUndoSt at e method,
passing a frame holding your undo information as its argument; for example,

nmyChar Edi t Vi ew. SaveUndoSt ate : = func (appState)

begi n
| ocal savedState := {nylnfo : aValue, ...}
i nherited: SaveUndoSt at e(savedSt at e) ;
end
appState Frame containing your application’s saved undo

information.

Application-Defined protoCharEdit Template Methods

Your template can provide optional Set upSt ri ng and Cl eanupStri ng
methods to manipulate the string the comb view displays.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

SetupString

charEditTemplate: Set upSt ri ng(str)

Optional method you provide which preprocesses the string in the comb
view’s t ext slot. This method formats the string passed as its argument as
required for display in the comb view and then sets the value of the comb
view’s t ext slot to the newly formatted string.

If you provide this method, it is invoked when the pr ot oChar Edi t view
opens and when the Set Text AndTenpl at e method is called.

str The string on which this method operates. The system
obtains this value from the t ext slot before this method
is invoked.

CleanupString

charEditTemplate: Cl eanupSt ri ng(str)

Optional method you provide which postprocesses the string in the comb
view’s t ext slot. For example, you can use this method to strip extraneous
spaces or leading zeros from the string before it is displayed in the comb
view.

If you provide this method, it is called by the Get Wor dFor Di spl ay or
UseText AndTenpl at e methods when the text in the comb view changes.

str The string on which this method operates. The system
obtains this value from the t ext slot before this method
is invoked.

protoCorrectinfo

The system holds correction information for recently-recognized words in a
frame that you obtain by calling the Get Cor r ect | nf o global function
(page 8-56). You can send messages to this frame to retrieve and manipulate
correction information for individual words. The methods described in this
section use the correctinfo metasymbol to represent this frame, which is based
on the pr ot oCor r ect | nf 0 system prototype.

Recognition System Prototypes 8-53

8-54

CHAPTER 8

Recognition System Reference

The correctinfo frame contains the following slots of interest to developers:

Slot descriptions

info An array of wor dI nf o frames based on the
pr ot oWor dI nf o system prototype. Each frame stores
the correction information for a recognized word. For
more information, see “WordInfo Frame” beginning on
page 8-30.

max The maximum number of items for which the system
stores cor r ect | nf o frames. Currently, the maximum
value for this slot is 10; it may change in the future.

As words are recognized, the system creates wor dI nf o frames and saves
them in the i nf o slot of the correctInfo frame. The current version of the
system saves up to ten wor dI nf o frames at a time (as specified by the
correctinfo frame’s max slot). When the system must add an eleventh frame to
this array, it extracts learning data from the oldest frame as necessary before
discarding the oldest wor dI nf o frame.

The correctInfo frame provides the following methods of interest to
developers. You do not need to call any of these methods yourself for views
based on the cl Par agr aphVi ew class—such views provide all of these
behaviors automatically. These methods are provided for the implementation
of text support in views not descended from the cl Par agr aphVi ewclass.

Correctinfo Functions and Methods

These functions allow you to obtain and manipulate correction information
for recognized words.

Offset

correctinfo: OF f set (view, start, oldSize, newsSize) ;

Repositions wor dI nf o frames in the correctInfo.i nf o array. Usually, you do
not need to call this method when view is based on the cl Par agr aphVi ew
class; these kinds of views update the system’s cor r ect | nf o frame for you
automatically as the user edits text in the paragraph view.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

When replacing, inserting, or deleting a range of text in a view not derived
from the cl Par agr aphVi ewclass, you may need to add, remove, or delete
wor dI nf o frames from the cor r ect | nf o frame yourself. This method
repositions existing wor dl nf o frames in the correctinfo frame to make room
for your changes to the correctinfo frame.

view The view in which text is being replaced. For purposes
of moving correctinfo from one view to another—for
example, during a drag and drop operation on some
text—you can set this value to 0 to offset all the
wor dI nf o frames in the cor r ect | nf o frame
regardless of source view.

start Offset into the text of the beginning of the range of text
to replace.

oldSize Size of the text to replace.

newsize Size of the text to insert.

When you are inserting text in view, the value of oldSize is less than that of
newsSize. In this situation, the Of f set method moves wor dl nf o frames
associated with words to the right of the insertion point to the right within
the cor r ect | nf 0.i nf 0 array—that is, it makes room in the array for the
subsequent insertion of wor dI nf o frames associated with the inserted text.

When you are deleting text from view, the value of newsSize is less than that of
oldSize. In this situation, the Of f set method moves wor dl nf o frames
associated with words to the right of the deletion to the left within the
correct | nf o.i nf 0 array—that is, it shifts existing array elements to close
up empty space created by the removal of wor dI nf o frames associated with
the deleted text.

When the range being replaced overlaps existing wor dI nf o elements, those
elements are deleted.

When you delete a single space that lies between two words, this method
merges the corresponding wor dI nf o frames.

When the value of the view parameter is 0, all wor dI nf o frames in the
correct | nf o frame are offset, regardless of their source view.

Recognition System Prototypes 8-55

8-56

CHAPTER 8

Recognition System Reference

GetCorrectinfo

Get Correct I nfo()

Returns the system-maintained correction information frame.

GetViewlD

Get Vi ew D(view)

Returns the specified view’s unique identifier. This value is used to identify
source and destination views when copying correction information between
views.

view The view for which this function returns the identifier.

GetCorrectionWordInfo

Cet Correct i onWor dl nf o(wordUnit)

Returns a wor dI nf o frame extracted from the word unit passed as its
argument. You can use this function to inspect or alter the wor dI nf o frame
from within your Vi ewWr dScr i pt method before a word is actually added
to the paragraph view that provides the Vi ewMér dScr i pt method. This
function creates a new wor dI nf o frame and caches it in the wordUnit, so
that the same wor dI nf o frame can be used later to add wor dI nf o to the
paragraph.

wordUnit The word unit passed to the Vi ewMér dScr i pt
method. This object is valid only while the various
recognition-related Vi enXxxScri pt methods are being
called. Do not attempt to save units for later use.

RemoveView

correctinfo: RenmoveVi ew(view) ;

Deletes from correctinfo all frames having the same vi ewl D value as view.
This method is useful when an entire view is being deleted, and you want to
delete all correctinfo information corresponding to that view.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

view The view from which this method extracts a vi em D
value. This value is the same one returned by the
Get Vi ewl D function.

Find

correctinfo: Fi nd(view, offset) ;
Returns the wor dI nf o frame at the specified offset in the specified view.

view The view from which to extract a wor dI nf o frame. This
view must contain a t ext slot holding the word to
which the value of the offset parameter refers.

offset The number of characters from the beginning of the
view. t ext slot to the first character of the word for
which this method extracts a wor dI nf o frame.

FindNew
correctinfo: Fi ndNew(view, offset, length) ;

Returns the wor dI nf o frame at the specified offset in the specified view. If
this method does not find a wor dI nf o frame at the specified location, it
creates a new wor dl nf o frame for the word, adds it to the correctinfo frame,
and returns the new wor dI nf o frame.

view The view that performs text recognition, from which
this method extracts a wor dI nf o frame. This view must
contain a t ext slot holding the word referred to by the
value of the offset parameter.

offset The number of characters from the beginning of the
view. t ext slot to the first character of the word for
which this method extracts a wor dI nf o frame.

length The number of characters in the word.

Recognition System Prototypes 8-57

8-58

CHAPTER 8

Recognition System Reference

AddUnit

correctinfo: AddUni t (view, start, stop, unit);

Extracts the wor dI nf o frame from the specified unit and adds it to the
correctInfo frame. This method does not move existing elements. If you are
inserting or replacing text, you need to invoke the Of f set method to adjust
correctinfo before using the AddUni t method to add wor dI nf o frames to it.
The AddUni t method can be called from the Vi ewMér dScr i pt method of
view to write the word unit’s wor dI nf o frame into the correctinfo frame.

view The view into which text is being inserted. This view
must contain a t ext slot holding the word referred to
by the value of the offset parameter.

start The number of characters from the beginning of the
view. t ext slot to the first character of the word being
inserted.

stop The number of characters from the beginning of the

view. t ext slot to the end of the word being inserted.
This value is equal to the sum of start plus the length of
the word.

unit The word unit from which the wor dI nf o frame is
extracted. This object is valid only during the
recognition process—that is, while the various
recognition-related scripts are being called. Do not
attempt to save units for later use.

AddWord

correctinfo; AddWor d(wordInfo) ;

Adds the specified wordInfo frame to the correctinfo.i nf o array. This method
doesn't do anything to the wordInfo or correctinfo frames—it just adds the
wordInfo frame to the correctinfo.i nf o array.

wordlnfo The wor dI nf o frame to add.

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

Clear

correctinfo: Cl ear (view, offset, length) ;

Deletes all wor dI nf o frames that overlap the specified range. If view is ni |,
this method removes any wor dl nf o frames that overlap the range,
regardless of their originating view.

view The view from which text is being deleted. This view
contains a t ext slot that holds the word referred to by
the value of the offset parameter.

offset The number of characters from the beginning of the
view. t ext slot to the first character of the word being
deleted.

length The number of characters in the word being deleted.

Extract

correctinfo: Ext r act (view, start, stop);

Creates a new correction information frame, copies all wor dl nf o frames
overlapping the specified range in view into it, and returns the resulting
frame. This method does not remove wor dI nf o frames from the correctinfo
frame—normally, you use the Of f set and O ear methods to do so when
necessary.

The Ext r act method clones the entries that are copied, in case the receiver
wants to offset them. This method is useful for supporting undo or drag and
drop operations. For example, you could use it to copy correction
information when dragging a text selection to a new view.

view The view from which to extract text.

start Offset to the beginning of the range of text to copy,
expressed in characters from the beginning of the string
in the view. t ext slot.

stop Offset to the end of the range of text to copy, expressed
in characters from the beginning of the string in the
view. t ext slot.

Recognition System Prototypes 8-59

8-60

CHAPTER 8

Recognition System Reference

Insert

destCorrectinfo: | nsert (srcCorrectinfo, destView) ;

Inserts copies of all wor dI nf o frames in srcCorrectInfo into the destCorrectinfo
frame.

destCorrectInfo The correctinfo frame that is to hold the copied entries.

srcCorrectinfo The correctinfo frame that holds the wor dI nf o frames to
copy.

destView The view into which text is being inserted.

In typical usage of this method, you would take the following steps:

1. Call the Of f set method of the destCorrectinfo frame to create space to
hold the new wor dI nf o frames.

2. Call the O f set method of the srcCorrectInfo frame to specify the range of
text for which this method copies wordInfo frames.

3. Call the I nsert method of the destCorrectinfo frame to copy the specified
set of wor dl nf o frames

protoWordinfo

The pr ot oWor dI nf o frame holds the correction information for a
recognized word. This frame contains slots specifying the

cl Par agr aphVi ewview that contains the word, the position of the word in
its view, the alternate interpretations of the original input strokes that
produced the word, and a reference to the recognizer that recognized the
word. Optionally, this frame can also contain strokes, ink, and learning data.

Each pr ot oWbr dI nf o frame contains the following slots of interest to
developers:

Slot descriptions

ID For system use only. An integer used by
pr ot oWbr dI nf 0 methods to identify the
cl Par agr aphVi ewview in which the recognized word

Recognition System Prototypes

CHAPTER 8

Recognition System Reference

appears; this is the same value returned by the
CGet Vi ew D function. Do not rely on this value for any
operations not performed by pr ot oWr dI nf 0 methods.

start A zero-based index into the t ext slot of the
cl Par agr aphVi ewview. This value specifies the
position of the word’s first character. You can determine
the number of characters in the word by subtracting the
value of the st op slot from the value of the st art slot.

st op A zero-based index into the t ext slot of the
cl Par agr aphVi ewview. This value specifies the
position of the space after the word’s last character. You
can determine the number of characters in the word by
subtracting the value of the st op slot from the value of
thestart slot.

flags Not documented; for system use only.
unitl D Not documented; for system use only.
wor ds The list of words returned by the recognition system as

an array of pr ot oWor dl nt er p frames. The
pr ot oWbr dI nt er p system prototype is described in
“protoWordInterp” beginning on page 8-63.

st rokes The stroke bundle associated with the word. This value
is ni | when no stroke data is present. For more
information, see “The Stroke Bundle Frame” on
page 8-28.

i nk The compressed ink representing the written word. This
value is ni | when no ink is present for the word. This
slot is used rarely and this information is provided for
debugging use only; commercial applications must not
rely on this value.

uni t Dat a Not documented; for system use only.

Recognition System Prototypes 8-61

CHAPTER 8

Recognition System Reference

A typical pr ot oWor dI nf o frame looks like the following code example.

[{id: 267, // ID of viewthat owns this data

/1

/1

Start: 0, // first char’s offset into cl ParagraphView view
Stop: 5, // last char’'s offset into cl ParagraphView vi ew

fl ags: forSystemUseOnly, // do not use this slot

unitI D: forSystemUseOnly, // do not use this slot

list of words & associated data returned by recognition system

words: [{word: "Lunch", score: 130, label: -1, index: 0},
{word: "lunch", score: 0, label: -1, index: -2},
{word: "Lunar", score: 290, label: -1, index: 1},

{word: "Sundv", score: 300, label: -1, index: 2}],

the original input’s stroke data

strokes: {class: strokeBundl e,
bounds: {left: 176, top: 289, right: 338, bottom 336},
strokes: [<stroke, |ength 2040>]},

uni t Dat a: forSystemUseOnly}, // do not use this sl ot

Note the negative values in the second interpretation of the word lunch. The
- 1 value is the default value of the | abel slot and the - 2 value in the i ndex
slot indicates that the word was synthesized by the system; in other words,
it's an alternate capitalization, or something similar. Use these values for
debugging purposes only; commercial applications must not rely on them.

WordInfo Methods

You can use the following methods to manipulate correction information
encoded as wor dI nf o frames.

8-62 Recognition System Prototypes

CHAPTER 8

Recognition System Reference

SetWords
wordInfo: Set Wor ds (words)

Sets the list of words held in a wor dI nf o frame. For each element in the
words array, this method clones the pr ot oWor dI nt er p frame and sets its
wor d slot to the value of that array element.

words An array of strings.

GetWords
wordInfo: Get Wor ds()

Returns an array of strings, one for each wor dlI nt er p frame stored in the
wordlInfo. wor ds array.

AutoAdd
wordInfo: Aut oAdd()

Adds the first item in the wordInfo frame's word list to the auto-add
dictionary and the user dictionary. If the wordInfo frame has a non-ni |
_noAut 0Add slot, this method does nothing.

AutoRemove

wordInfo: Aut oRenove()

Removes the first word in the wordInfo frame’s word list from the user
dictionary if that word was previously added by the Aut 0Add method.

protoWordInterp

The wor ds slot in the pr ot oCor r ect | nf o frame stores an array of

pr ot oWor dlI nt er p frames returned by the recognition system. Each

pr ot oWor dlI nt er p frame contains data associated with a possible
interpretation of the original stroke data. For an example of a typical

pr ot oWor dl nt er p frame, see the wor ds slot in the pr ot oWor dl nf o code
listing on page 8-62.

Recognition System Prototypes 8-63

CHAPTER 8

Recognition System Reference

Each pr ot oWor dI nt er p frame containing the following slots:

Slot descriptions

wor d The text string to which the values of the other slots in
this frame apply.
score An integer indicating the accuracy level of the match

between this word and the original ink. A low score
indicates a good match; conversely, a higher score
indicates a poorer match.

| abel For system use only. The default value is - 1. Use this
value for debugging purposes only; commercial
applications must not rely on it.

i ndex An integer indicating the position of this word in the
original list of matches returned by the recognition
system. The word having the lowest i ndex value is
displayed at the top of the text-correction picker. This
value is initialized to - 1. A value of - 2 indicates that
the word was synthesized by the system; in other
words, it’s an alternate capitalization or something
similar. Use these values for debugging purposes only;
commercial applications must not rely on them.

Recognition Functions

8-64

This section describes functions that you can use to configure the recognition
system, control the display of electronic ink, access information in objects
such as units and stroke bundles, manipulate various dictionaries, and
implement your own form of deferred recognition.

Recognition Functions

CHAPTER 8

Recognition System Reference

Recognition Configuration Functions

These functions allow you to configure the recognition system dynamically.

ReadCursiveOptions
ReadCur si veOpt i ons()

Reconfigures the recognition system dynamically, using the current values of
user preferences for handwriting recognition. You must call this function to
cause the recognition system to use the current settings after changing values
in the system’s user configuration data. You can also call this function after
changing a view’s view flags, entry flags, or r ecConf i g frame; however, it’s
not absolutely necessary to do so: calling the Pur geAr eaCache function is
sufficient when user preferences have not changed.

PurgeAreaCache
Pur geAr eaCache()

Recalculates recognition behavior for all views. Call this function when you
have changed your view’s r ecConf i g frame, view flags, entry flags, or

di cti onari es slot. This function does not affect stroke recognition that
began before it was called.

PrepRecConfig

Pr epRecConf i g(recConfigFrame)

Returns a RAM frame that references the specified template from its _pr ot o
slot and references recognition-related user configuration data from its
_par ent slot.

recConfigFrame The view’s recognition configuration frame.

You can use this function to create a r ecConf i g frame that can be modified
at run time by placing the following code fragment in your view’s
Vi ewSet upFor nScri pt method:

/1 prebuild editable recConfig frane
recConfig := PrepRecConfig(recConfig);

Recognition Functions 8-65

8-66

CHAPTER 8

Recognition System Reference

BuildRecConfig

Bui | dRecConf i g(view)

Returns ar ecConf i g frame that is configured exactly like the one used for
recognition in the specified view. The frame that this function returns is
intended for debugging use only—any changes you make to it are not
applied to the view.

view The view from which this function builds ar ecConfi g
frame.

Application-Defined Recognition Methods

These messages are sent to your view during pen input. Your view can
supply the following optional methods to take action in response to these
messages.

ViewClickScript

view: Vi ewCl i ckScri pt (unit)

This message is sent when the user places the pen on the screen within the
bounds of a view that has the v i ckabl e flag set. This message is sent
before the view system does any processing of the pen input.

The system does not necessarily send this message for every single pen tap.
When recognizers that group strokes are enabled, this message is sent only
once for each group.

unit The unit (word unit, stroke unit, gesture unit, or shape
unit) passed to the Vi enCl i ckScri pt method. This
object is valid only while the various recognition-related
Vi ewXxxScr i pt methods are being called. Do not
attempt to save units for later use.

If the Vi ewd i ckScri pt method returnst r ue, the pen interaction is
considered to be complete: the system performs no further processing of the
pen input and no other stroke-related messages are sent to the view (for
example, Vi ewSt r okeScri pt, Vi enGest ur eScri pt, and so on).

Recognition Functions

CHAPTER 8

Recognition System Reference

If the Vi ewd i ckScri pt method returns the ' ski p symbol, the view does
not pass the Vi ewC i ckScri pt message up the _par ent chain but sends
all other messages that it normally would. You can return this symbol when
you want to prevent clicks from falling through to other views while still
passing strokes or gestures along. For information on how views handle pen
input in general (rather than for recognition purposes) see “Handling Pen
Input” (page 3-10) in Newton Programmer’s Guide.

If the Vi ewd i ckScri pt method returns ni | , the system continues to
process the pen input. The message is passed up the parent view chain, until
itis handled by a Vi ewd i ckScri pt method or ignored. If the

Vi ewd i ckScri pt message is not handled and there are other recognition
flags set, then additional system messages may be sent to the view. For
example, if the vSt r okesAl | owed flag is set, then the Vi ewSt r okeScri pt
message may be sent; this may be followed by the Vi ewGest ur eScri pt
message, if the vGest ur esAl | owed flag is set; and this may be followed by
the Vi ewMbr dScri pt message, if word recognition is enabled.

You can determine the coordinates of the pen-down location by calling the
Cet Poi nt function from within your Vi enCl i ckScri pt method. To
prevent the display of electronic ink in the view while tracking the pen, you
can call the view methods TrackHi | i t e or Tr ackBut t on or the global
functions | nNkOF f or | nkCOF f UnHobbl ed.

Note that calling the Ti cks function from within your Vi ewd i ckScri pt
method provides the time when the Vi ewdl i ckScri pt method was
invoked instead of the time when the stroke began. To obtain accurate times
for the beginning and the end of a stroke, your Vi ewCl i ckScri pt method
can call the Get Uni t St art Ti me and Get Uni t EndTi me functions,
respectively.

Attempting to use the Get Uni t EndTi me function before input is complete
can produce unpredictable behavior—most often, a bus error. Your

Vi ewd i ckScri pt method can use the St r okeDone function to determine
whether the user has finished making the stroke. The following example uses
the result returned by the St r okeDone function to condition its call to the

Dr ag method. The Dr ag method tracks the pen on the screen automatically
and drags the view to where the pen is lifted.

Recognition Functions 8-67

CHAPTER 8

Recognition System Reference

Viewd ickScript := func(unit)
begi n
startTicks := GetUnitStartTi me(unit);
whi |l e not StrokeDone(unit) do
begi n
/1 drag the view when it’s tapped
:Drag(unit, nil);
/1l inportant to sleep in tight | oops see note
Sl eep(1);
end
/1 do what you need to do with tines here
endTi cks : = GetUnitEndTi me(unit);
end

Note

Tight loops use power more heavily than normal operation

does. To reduce power consumption significantly without

sacrificing responsiveness, your loop can call the S| eep

function with a value of 1 to 10 ticks as its argument. O

Here is another example; this code fragment captures all of the points in the
stroke. Note that the Vi ewSt r okeScri pt method is not suitable for such
use, because it is not called until after a short delay; see “ViewStrokeScript”
(page 8-69) for more information.

Viewd i ckScript: func(unit)
begi n
/1 track the click until the stroke is finished
| oop
begi n
whi |l e not StrokeDone(unit) do
/1l sleep alittle to save battery
Sl eep(10);
end;

8-68 Recognition Functions

CHAPTER 8

Recognition System Reference

/1 use GetPointsArray(unit) to get points
/1 and save them sonewhere
| ocal points := GetPointsArray(unit);

/1l yes, we handled the click, so erase the ink
/1 and stop recognition for this stroke

true;

end,

ViewStrokeScript

view: Vi ewSt r okeScr i pt (unit)

This message is sent when the pen is first lifted after contacting the screen
within the boundaries of the specified view (assuming the view has the

vSt rokesAl | owed flag set). You can do any processing you want as a result
of this event. The view system does no default processing as a result of this
event.

The Vi ewSt r okeScr i pt message is sent to the view only the first time the
pen is lifted during a stroke. If the pen is lifted more than once during a
single stroke, only one Vi ewSt r okeScr i pt message is sent for that stroke.

The system does not necessarily send this message for every single pen tap.
The system treats multiple pen-down/pen-up events that are close together
in time as a single stroke (for writing letters and words); as a result, this
message may not be sent for every stroke when the delay between strokes is
not sufficient for the system to consider the strokes to be separate events. The
amount of time required to consider strokes separate is a function of the
speed of the processor and the recognition system, as well as the value of the
ti meout Cur si veQpt i on user preference.

unit The stroke unit passed to the Vi ewSt r okeScr i pt
method. This object is valid only while the various
recognition-related Vi ewXxxScr i pt methods are being
called. Do not attempt to save units for later use.

If the Vi ewSt r okeScri pt method returns t r ue, the pen interaction is
considered complete: the system performs no further processing of the pen

Recognition Functions 8-69

8-70

CHAPTER 8

Recognition System Reference

input, and no other stroke-related messages are sent to the view (for
example, Vi ewGest ur eScri pt, Vi esbr dScri pt, and so on).

If the Vi ewSt r okeScr i pt method returns ni |, the system continues to
process the pen input. The message is passed up the parent view chain, until
it is handled by a Vi ewSt r okeScr i pt method or discarded. If the stroke is
not handled and other recognition flags are set for the view, then additional
system messages may be sent to the view. For example, if the

vGest ur esAl | owed flag is set, then the Vi ewGest ur eScri pt message
may be sent. This message may be followed by the Vi ewWbr dScr i pt
message, if word recognition is enabled.

Note that this message is preceded by a Vi enCl i ckScri pt message if the
view has defined such a method. To capture all of the points in a stroke, you
need to use the Vi ewd i ckScri pt method, rather than the

Vi ewsSt r okeScri pt method, because the Vi enCl i ckScri pt message is
sent immediately when the pen is placed on the screen, whereas the

Vi ewSt r okeScri pt message is not sent until the stroke is complete. For a
code example, see “ViewClickScript” beginning on page 8-66.

You can determine the coordinates of the stroke using the function
Get Poi nt sArr ay, as shown in the following code example. For more
examples of the use of stroke units, see the description of the

Vi ewCl i ckScri pt method beginning on page 8-66.

Vi ewSt rokeScript: func(unit)

begi n
| ocal bounds, points;
bounds : = StrokeBounds(unit);

print("Bounds of stroke are "); print(bounds);
points : = CetPointsArray(unit);
print("Points are "); print(points);
true;
end

Recognition Functions

CHAPTER 8

Recognition System Reference

ViewGestureScript

view: Vi ewGest ur eScri pt (unit, gesture)

When the vGest ur esAl | owed flag is set for a view, this message is sent
when the user writes a recognizable gesture inside the view that the view
does not handle automatically. Views based on the c| Edi t Vi ewand

cl Par agr aphVi ewclasses handle standard gestures automatically; other
kinds of views do not. Standard gestures include scrub, highlight, tap,
double tap, caret, and line. To interpret gestures yourself in a cl Vi ewview,
you must set its vGest ur esAl | owed flag and provide a

Vi ewGest ur eScri pt method.

Gestures are returned only for strokes that are temporally isolated from other
strokes—that is, the system does not recognize strokes within a word as
gestures. Similarly, strokes that immediately precede or follow other strokes
are not recognized as gestures, either.

unit The gesture unit passed to the Vi ewGest ur eScri pt
method. This object is valid only while the various
recognition-related Vi ewXxxScr i pt methods are being
called. Do not attempt to save units for later use.

gesture An integer code that identifies the gesture that was
recognized. The following gestures are supported:

Gesture Constant Integer value
Tap aeTap 49
Double tap aeDoubl eTap 50
Scrub aeScr ub 13
Highlight aeHilite 47
Caret aeCar et 15
Line aeli ne 16

This message is sent after the view system recognizes the gesture, and only if
the gesture is one not normally handled by the view. For example, views of
the cl Par agr aphVi ewclass handle all gestures except a tap, so for this
kind of view, the Vi ewGest ur eScri pt message will not usually be sent

Recognition Functions 8-71

8-72

CHAPTER 8

Recognition System Reference

(except for pen taps). However, if you set the vReadOnl y flag in the
vi ewFl ags slot, the Vi ewGest ur eScri pt message will be sent for all
gestures except the highlight gesture.

Note

You can work around the limitation that this message is
sometimes not sent. For example, you may want a view to
receive this message regardless of what kind of view it is or
what kinds of input it handles. To do this, create a child view
of the cl Vi ewclass that is transparent and the same size as
the input view. If you set the appropriate input flags for the
cl Vi ewview, it will receive the input-related messages first.
For any particular message, the cl Vi ewview can take some
action and return t r ue to prevent the message from being
passed to the parent, or it can return ni | to pass the
message on to the parent. O

If the Vi ewGest ur eScri pt method returns t r ue, the recognition system
performs no further processing of this pen input and sends no additional
recognition-related messages (for example, Vi ewMbr dScr i pt) to the view .

If the Vi ewGest ur eScri pt method returns ni | , the system continues to
process the pen input. The message is passed up the parent view chain, until
itis handled by a Vi ewGest ur eScr i pt method or discarded. If the stroke
is not handled and other recognition flags are set for the view, then
additional system messages may be sent to the view. For example, if the
vGest ur esAl | owed flag is set, the Vi ewGest ur eScri pt message may be
sent. This message may be followed by the Vi ewMor dScr i pt message,
when word recognition is enabled for the view.

Note that the Vi ewGest ur eScri pt message is preceded by a

Vi ewSt r okeScr i pt message if the view has defined that method. The
Vi ewSt r okeScri pt message may be preceded by a Vi ewd i ckScri pt
message if the view has defined such a method.

Here is an example of the use of the Vi ewGest ur eScr i pt method. For
more examples of the use of stroke units, see the description of the
Vi ewCl i ckScri pt method beginning on page 8-66.

Recognition Functions

CHAPTER 8

Recognition System Reference

Vi ewGestureScript: func(unit, gestureKind)

begi n

if gestureKind = aeLine then // If it was a line
begin
/1l Make a new data itemin our app
end;

end

ViewWordScript
view: Vi ewbr dScr i pt (stroke)

This message is sent to the view performing text recognition when a word is
recognized.

unit The word unit passed to the Vi ewMér dScr i pt
method. This object is valid only while the various
recognition-related Vi ewXxxScr i pt methods are being
called. Do not attempt to save units for later use.

You can get the word that was recognized by calling the function

Get Wor dAr r ay. The first string in the array that the Get Wor dAr r ay
function returns is the interpretation in which the recognizer has the highest
confidence.

The Vi ewMbr dScr i pt message is sent after the system recognizes the word,
and only if the view is not one that normally supports word recognition. For
example, views of the c| Par agr aphVi ewand c| Edi t Vi ewclass support
word recognition, so they do not normally receive this message.

Recognition Functions 8-73

8-74

CHAPTER 8

Recognition System Reference

Note

You can work around the limitation that this message is

sometimes not sent. For example, you may want a view to

receive this message regardless of what kind of view it is, or

what kinds of input it handles. To do this, create a child view

of the cl Vi ewclass that is transparent and the same size as

the input view. If you set the appropriate input flags for the

cl Vi ewview, it receives the input-related messages first. For

any particular message, the cl Vi ewview can take some

action and return t r ue to prevent the message from being

passed to its parent, or it can return ni | to pass the message

on to its parent. O

If the Vi ewMbr dScr i pt method returnst r ue, the event is considered to be
handled. If the Vi ewMor dScr i pt method returns ni | , the message is
passed up the parent view chain until it is handled by a Vi ewMor dScr i pt
method or discarded. If no method handles the event, the unrecognized
strokes are grouped into words and passed to the Vi ewl nkWor dScri pt or
Vi ewRawl nkScri pt methods.

Here is an example of the use of this method. For more examples of the use
of stroke units, see the description of the Vi ewCl i ckScri pt method
beginning on page 8-66.

Vi ewMor dScri pt: func(unit)
begi n
| ocal mat chedWords, recogni zedWrd;
mat chedWirds : = Get WordArray(unit);
recogni zedWord : = mat chedWor ds[0] ;
print("The recogni zed word was " & recogni zedWrd);
true;
end

Note

The system searches for this method only in the current view
and its protos. The parent chain is not searched for the
Vi ewMobr dScr i pt method. O

Recognition Functions

CHAPTER 8

Recognition System Reference

ViewCorrectionPopupScript

textView: Vi ewCor r ect i onPopupScr i pt (pickForm)

The Vi ewCor r ect i onPopupScr i pt method provides a means of
modifying or replacing the picker displayed when the user double-taps a
previously recognized word. This method is not invoked if it has not been
defined or if a keyboard view is open when the user double-taps the
recognized word.

Your Vi ewCor r ect i onPopupScri pt method must return ni | to cause the
system to display the picker. For example, your method could insert or
remove items in the list of alternate interpretations of the recognized word
and return ni | to display the modified picker.

Your Vi ewCor r ect i onPopupScri pt method can returnt r ue to suppress
the display of the picker. For example, your method could provide an
alternative user interface to correction information and return t r ue to
suppress the display of the picker that the system provides.

pickForm A frame containing information about the recognized
word on which the user double tapped. The system
builds this frame and passes it to your
Vi ewCor r ect i onPopupScri pt method.

The pickForm frame contains the following slots:
bounds The vi ewBounds of the r ef Con. f orm
view. (see below)

wor dl nfo The wor dI nf o frame for the originally
recognized word. For more information,
see “protoWordInfo” beginning on
page 8-60.

pi ckl t ens Alternate interpretations of the
recognized word.

r ef Con A frame describing the view that contains
the word that was double-tapped.

The r ef Con frame contains the following slots:

form The view containing the word that was
double-tapped.

Recognition Functions 8-75

8-76

CHAPTER 8

Recognition System Reference

wor dCf f set
Offset of the beginning of the recognized
word, expressed as the number of 2-byte
characters from the beginning of the f or m
view’s t ext slot. This value is similar to
the offsets used for other text-related
functions and methods.

wor dLengt h
The number of characters in the word.

The following code fragments illustrate typical pi ckFor mand r ef Con

frames.

pi ckForm : = {

r ef Con

b

bounds: nil, /1 boundi ng box for word
wordinfo: nil, // wordlnfo frame for word
pickltenms: nil, // array of words fromwordlnfo
refCon: nil, /1 frame describing view

1
.= /] frame describing view containing word

{

form nil, /1 view containing word
wordOf fset: nil, /1 offset of word within form
wordLength: nil, /1 length of word

Inker Functions

These functions allow you to control the display of electronic ink.

InkOff

I nkOF f (unit)

Turns off the display of electronic ink for the current stroke, which is
referenced by the specified unit. This function’s return value is unspecified.

Recognition Functions

CHAPTER 8

Recognition System Reference

This function is usually called from within a view’s Vi ewCl i ckScri pt
method. You cannot call this function successfully from within a

Vi ewSt r okeScr i pt method because the Vi ewSt r okeScr i pt message is
not sent until the stroke is completed.

Note

This function reduces the tablet’s sampling rate to conserve
battery power and provide better performance in scrolling
views. As a result, stroke information obtained after calling
this function is inconsistent with that normally returned by
the tablet; however, the reduced sampling rate is suitable for
tracking the pen in most situations. If you need
high-resolution point data, use the | nkOf f UnHobbl ed
function to disable the inker. O

unit The unit (word unit, stroke unit, gesture unit, or shape
unit) passed to the Vi ewd i ckScri pt method when
the user touches the pen to the screen. This object is
valid only during the recognition process—that is, while
the various recognition-related scripts are being called.
Do not attempt to save units for later use.

InkOffUnHobbled
I nkOf f UnHobbl ed(unit)

Turns off the display of electronic ink for the stroke contained in the specified
unit. This function does not reduce the tablet hardware’s sampling rate. It is
intended for use in situations requiring the suppression of inking while
tracking the pen with a high degree of precision. This function’s return value
is unspecified.

This function is usually called from within a view’s Vi enCl i ckScri pt
method. You cannot call this function successfully from within a

Vi ewSt r okeScr i pt method because the Vi ewSt r okeScr i pt message is
not sent until the stroke is completed.

unit The unit (word unit, stroke unit, gesture unit, or shape
unit) passed to the Vi enCl i ckScri pt method when

Recognition Functions 8-77

8-78

CHAPTER 8

Recognition System Reference

the user touches the pen to the screen. This object is
valid only during the recognition process—that is, while
the various recognition-related scripts are being called.
Do not attempt to save units for later use.

SetinkerPenSize

Set | nker PenSi ze(size)
size The width of the pen, in pixels.

Sets the thickness of the electronic ink drawn on the screen. The pen size can
range from 1 to 4 pixels wide; the system default is 2.

This function returns ni | if the pen size was set successfully; otherwise, it
returns an error code.

Note

This function only changes the width of ink as it is drawn by
the system. To ensure that ink is properly displayed and
updated under all circumstances, you must use the

Set User Conf i g function to set an appropriate value for
the user PenSi ze slot in the system’s user configuration
data. After doing so, you need to pass this value as the
argument to the Set | nker PenSi ze global function. O

The following code example sets the size of the pen to four pixels:

Set User Confi g(' user PenSi ze, 4);
Set | nker PenSi ze(4) ;

Stroke Unit Functions

These functions operate on the objects passed to the Vi enCl i ckScri pt,
Vi ewSt r okeScri pt, Vi emGest ureScri pt, and Vi ewMor dScri pt
methods. These objects include stroke units, word units, gesture units, and
shape units.

Recognition Functions

CHAPTER 8

Recognition System Reference

GetPoint

Get Poi nt (selector, unit)

Returns the specified point coordinates from the stroke contained in the
specified unit. All points returned are in global (screen) coordinates.

If the stroke is in progress when this function is called, the coordinate of the
last point read by the system (f i nal X, fi nal Y, or f i nal XY) may not be the
last point in the stroke. You can call the St r okeDone function to determine

whether the stroke is complete.

selector

unit

Recognition Functions

Specifies which point coordinate is returned. This
parameter may hold any of the following predefined

values:
firstX

firstY

firstXY

final X

finalY

final XY

The X coordinate of the first point in the
stroke.

The Y coordinate of the first point in the
stroke.

The X and Y coordinates of the first point
in the stroke.

The X coordinate of the last read point in
the stroke.

The Y coordinate of the last read point in
the stroke.

The X and Y coordinates of the last read
point in the stroke

The unit passed to the Vi ewC i ckScri pt or

Vi ewSt r okeScri pt methods. This object is valid only
during the recognition process—that is, while the
various recognition-related scripts are being called. Do
not attempt to save units for later use.

8-79

8-80

CHAPTER 8

Recognition System Reference

GetUnitStartTime

Get Uni t St art Ti ne(unit)

Returns the time, expressed in ticks, when the strokes comprising the object
(word unit, shape unit, stroke unit, or gesture unit) encapsulated by the
specified unit began.

unit The unit passed to the Vi ewMér dScri pt,
Vi ewSt r okeScri pt, and Vi ewGest ur eScri pt
methods. This object is valid only while the various
recognition-related Vi ewXxxScr i pt methods are being
called. Do not attempt to save units for later use.

GetUnitEndTime

Get Uni t EndTi ne(unit)

Returns the time, expressed in ticks, when the strokes comprising the object
(word unit, shape unit, stroke unit, or gesture unit) encapsulated by the
specified unit ended.

unit The unit passed to the Vi ewMér dScri pt,
Vi ewSt r okeScri pt, and Vi ewGest ur eScri pt
methods. This object is valid only while the various
recognition-related Vi ewXxxScr i pt methods are being
called. Do not attempt to save units for later use.

StrokeDone

St r okeDone(unit)

Returns t r ue if the stroke contained in the specified unit has been
completed by the user (the pen has been lifted from the screen). Returns ni |
if the stroke is not yet completed.

unit The stroke unit passed to the Vi ewCl i ckScri pt
method. This object is valid only while the various
recognition-related Vi enXxxScr i pt methods are being
called. Do not attempt to save units for later use.

Recognition Functions

CHAPTER 8

Recognition System Reference

The following code fragment uses the St r okeDone function to determine
whether the user has finished the current input stroke:

Viewd ickScript : func(unit)
begi n
whil e not StrokeDone(unit) do
/1 do sonething here
[l inmportant to sleep in tight |oops - see note
Sl eep(1);
end

Note

Tight loops use power more heavily than normal operation.
To reduce power consumption significantly without
sacrificing responsiveness, your loop can call the Sl eep
function with a value of 1 to 10 ticks as its argument. O

StrokeBounds
St r okeBounds (‘unit)

Returns a vi ewBounds frame describing the boundaries of the unit in its
view. A vi ewBounds frame has this structure:

{left: nl, top: n2, right: n3, bottom n4}

unit The unit passed to the Vi ewWor dScri pt,
Vi ewSt r okeScri pt, and Vi ewGest ureScri pt
methods. This object is valid only while the various
recognition-related Vi ewXxxScri pt methods are being
called. Do not attempt to save units for later use.

GetPointsArray

CGet Poi nt sArray(unit)

Returns an array of points extracted from the specified unit. If the unit
encapsulates multiple strokes, this function returns points from the first
stroke.

Recognition Functions 8-81

8-82

CHAPTER 8

Recognition System Reference

The array that this function returns consists of coordinate pairs describing
the points. The first element contains the Y coordinate of the first point, the
second element contains the X coordinate, and so on. (Note that this is the
reverse of the usual way that coordinate pairs are written.) Coordinates are
global; that is, they are relative to the upper-left corner (0, 0) of the screen.

unit The unit passed to the Vi ewWbr dScr i pt,
Vi ewSt rokeScri pt, and Vi ewGest ur eScri pt
methods. This object is valid only while the various
recognition-related Vi ewxXxxScr i pt methods are being
called. Do not attempt to save units for later use.

GetWordArray

Get Wor dAr r ay (unit)

Returns an array of strings that are the recognition choices for the unit
passed as its argument. The first element in the array is the word with the
highest probability of matching the stroke that the user wrote (the highest
score). The subsequent elements are alternate choices in descending order of
matching confidence. Note that the “words” returned aren't necessarily
alphabetical. They can be numbers, phone numbers, times, or any other kind
of recognized characters.

unit The word unit passed to the Vi ewMér dScr i pt
method. This object is valid only while the various
recognition-related Vi ewxXxxScr i pt methods are being
called. Do not attempt to save units for later use.

GetScoreArray

Get Scor eAr r ay(unit)

Returns an array of numbers that are the recognition confidence scores for
each of the words returned by Get Wor dAr r ay. There is one score for each
word. A score can range from 1 to 1000, with a lower number representing a
higher recognition confidence.

unit The word unit passed to the Vi ewMér dScr i pt
method. This object is valid only while the various

Recognition Functions

CHAPTER 8

Recognition System Reference

recognition-related Vi ewXxxScr i pt methods are being
called. Do not attempt to save units for later use.

Stroke Bundle Functions and Methods

This section describes the functions and methods you can use to work with
stroke bundles.

Expandink

Expandl nk(poly, format)
Decompresses the ink in a polygon view and returns it as a stroke bundle.

poly A cl Pol ygonVi ew which is stored as a child of a
cl Edi t Vi ewand has an i nk slot. You can test this by
calling the Pol yCont ai nsl nk function, which is
described in “PolyContainsInk” on page 7-35.

format The data resolution and filtering value. Use one of the
values shown in Table 8-6 on page 8-29.

The stroke bundle returned by Expandl nk uses the same coordinate system
and has the same bounds as the polygon view. Every point within the
returned stroke bundle falls within those bounds.

If you expand ink at tablet resolution, the returned stroke bundle contains
points that are at the highest resolution that can be derived from the
compressed ink. If you expand ink at screen resolution, the points in the
stroke bundle are spaced at a resolution approximately equal to screen
resolution. The former expansion is suitable for recognition; the latter for
display.

ExpandUnit
ExpandUni t (unit)

Creates a stroke bundle from information in unit and returns the stroke
bundle, which uses global coordinate values.

Recognition Functions 8-83

CHAPTER 8

Recognition System Reference

unit An object that describes pen input information, as
discussed in “Stroke, Word, and Gesture Units” on
page 8-29. This is the object passed to one of the
following application-defined view methods:
the Vi ewSt r okeScr i pt method (stroke units),
the Vi esWor dScri pt method (word units),
or the Vi ewGest ur eScri pt method (gesture units).

Note that if you want a reference to the stroke bundle that is cached in a
word unit, you should use the Get Cor r ect i onWor dI nf o function, which
returns a frame that contains the stroke bundle in a slot named st r okes. For
more information, see “GetCorrectionWordInfo” on page 8-56.

CompressStrokes

Conpr ess St r okes(strokeBundle)
Compresses the strokeBundle and returns a polygon view.

strokeBundle A stroke bundle frame, as described in “The Stroke
Bundle Frame” on page 8-28.

CountPoints

Count Poi nt s(stroke)
Returns the number of points in stroke as an integer value.

stroke A binary object representing an ink stroke.

CountStrokes

Count St r okes(strokeBundle)
Returns the number of strokes in the stroke bundle as an integer value.

strokeBundle A stroke bundle frame, as described in “The Stroke
Bundle Frame” on page 8-28.

8-84 Recognition Functions

CHAPTER 8

Recognition System Reference

GetStroke
Get St r oke(strokeBundle, index)

Returns the stroke binary object specified by index from the strokes array in
the strokeBundle frame.

strokeBundle A stroke bundle frame, as described in “The Stroke
Bundle Frame” on page 8-28.

index An integer specifying a stroke in the stroke bundle array.

GetStrokeBounds

Get St r okeBounds (stroke)

Calculates the bounding rectangle for the specified stroke, and returns it as a
frame.

stroke A binary object representing an ink stroke.

GetStrokePoint

Get St r okePoi nt (stroke, index, point, format)

Copies the data from a specified point in a stroke into a new point.

stroke A binary object representing an ink stroke.

index An integer specifying the point in the stroke to copy.
point A frame containing slots named x and y.

format The data resolution and filtering value. Use one of the

values shown in Table 8-6 on page 8-29. Note that the
duplication filter is ignored by this function.

The Get St r okePoi nt function copies the data for the point in stroke
specified by index. The data is copied into the point frame, using the
resolution specified by format.

Recognition Functions 8-85

8-86

CHAPTER 8

Recognition System Reference

GetStrokePointsArray

CGet St r okePoi nt sArr ay(stroke, format)

Copies the data for all the points in stroke into an array. The points are
filtered and scaled according to the value of the format parameter.

stroke A binary object representing an ink stroke.

format The data resolution and filtering value. Use one of the
values shown in Table 8-6 on page 8-29.

The Get St r okePoi nt sArr ay function returns a point array, as described
in “Point Arrays” on page 8-30.

InkConvert

| nkConver t (ink, outputFormat)

Converts the input ink to the specified format and returns the converted ink
as a binary object. If ink is not a valid ink object, this function returns ni | .

ink A binary object that contains the ink to be converted.
outputFormat A symbol that defines the conversion type. Use one of
the following values:
"ink The ink is converted to 1.x-compatible
ink.
"ink2 The ink is converted to 2.x sketching ink.
"i nkword The ink is converted to 2.x ink text.

MakeStrokeBundle

MakeSt r okeBundl e(strokes, format)
Creates a stroke bundle from an array of points.

strokes An array of point arrays. The structure of each point
array is described in “Point Arrays” on page 8-30. Each
point array represents the coordinate data for a single
stroke in the stroke bundle.

Recognition Functions

CHAPTER 8

Recognition System Reference

format The data resolution and filtering value for the point
values in the strokes array. Use one of the values shown
in Table 8-6 on page 8-29.

The MakeSt r okeBundl e function uses the coordinate data in strokes to
create a stroke bundle and it returns that bundle. The input data is assumed
to be in the resolution specified by format.

You can use the MakeSt r okeBundl e function to synthesize ink text for
recognition; however, the quality of recognition is uncertain for such data.
The recognizer generally requires high-quality, tablet-resolution data in order
to produce accurate results.

Mergelnk

Mer gel nk(polyl, poly2)

Decompresses the ink text in two polygons, recompresses them as a union of
the original two polygons, and returns the resulting polygon. If a memory
error occurs, Mer gel nk returns ni | .

polyl, poly2 A cl Pol ygonVi ew which is stored as a child of a
cl Edi t Vi ewand has an i nk slot. Test this by using the
method Pol yCont ai nsl nk, which is described in
“PolyContainsInk” on page 7-35.

The Mer gel nk function assumes that both of its arguments are polygon
views containing ink text and that these views are horizontally adjacent with
no intervening space.

PointsArrayToStroke

Poi nt sArrayToSt r oke(pointsArray, format)

Creates a stroke from a point array.

pointsArray A point array, as described in the section “Point Arrays”
on page 8-30.
format The data resolution and filtering value for the point

values in the strokes array. Use one of the values shown
in Table 8-6 on page 8-29.

Recognition Functions 8-87

8-88

CHAPTER 8

Recognition System Reference

The Poi nt sArrayToSt r oke function creates a stroke from the coordinate
data in pointsArray and returns the stroke object. The resolution of the input
points is specified by format.

Note that the Poi nt sArrayToSt r oke function is the inverse of the
Get St r okePoi nt sArr ay function, which is described in
“GetStrokePointsArray” on page 8-86.

SplitinkAt

Spl it 1 nkAt (poly, x, slop)

Examines a polygon containing ink for a word break, splits the polygon at
that word break, and returns an array of two polygons, each of which
contains an ink word. The first array element is a polygon containing the first
word, and the second element is a polygon containing the second word. If
Spl it nkAt cannot find a reasonable break, it returns ni | .

Note

The Spl i t I nkAt function never finds a word break in the
middle of a stroke. O

poly A cl Pol ygonVi ew which is stored as a child of a
cl Edi t Vi ewand has ani nk slot. Test this by using the
method Pol yCont ai nsl nk, which is described in
“PolyContainsInk” on page 7-35.

X An integer specifying the horizontal position near
which this function looks for a word break.

slop An integer specifying how far in either direction (from
X) to search for a word break. The recommended value
for slop is somewhere between xHei ght and xHei ght /
2 for the word.

Recognition Functions

CHAPTER 8

Recognition System Reference

StrokeBundleTolnkWord
St r okeBundl eTol nkWor d(strokeBundle)

Converts the stroke bundle to an ink word. You can pass the resulting ink
word object to the Handl el nsert | t ens function, which is described in
“HandlelnsertItems” on page 7-54.

strokeBundle A stroke bundle frame, as described in the section “The
Stroke Bundle Frame” on page 8-28.

Deferred Recognition Functions

These functions allow you to implement your own form of deferred text
recognition.

RecognizePara

Recogni zePar a(para, start, end, hilite, config)

Recognizes ink in the paragraph view from the start index to the end index,
replacing the ink with the recognized text. All ink within the range is
converted. All text within the range is left as it is. This function returns an
integer that indicates the new end value for the range.

para The cl Par agr aphVi ewview containing the ink to be
recognized.
start Zero-based offset from the beginning of the paragraph

to the first ink character to be recognized.

end Zero-based offset from the beginning of the paragraph
to the last ink character to be recognized.

hilite The value t r ue specifies that the view is to highlight
each ink word as it is passed to the recognition system.
If this value is ni | , the words are not highlighted as
they are recognized.

config ArecConfi g frameorni|.WhenarecConfi g frame
is passed as this value, view uses it to recognize the

Recognition Functions 8-89

8-90

CHAPTER 8

Recognition System Reference

specified strokes. When this value is ni |, this method
uses the para view’s default recognition settings.

RecognizePoly

Recogni zePol y(poly, hilite, config)

Recognizes the ink in the poly view and replaces it in its parent view with the
text returned by the recognition system.

poly The cl Pol ygon view containing the ink to be
recognized.
hilite A nonzero integer value specifies that the view is to

highlight each ink shape as it is passed to the
recognition system. If this value is zero, the shapes are
not highlighted as they are recognized.

config ArecConfi g frameornil.WhenarecConfi g frame
is passed as this value, view uses it to recognize the
specified strokes. When this value is ni | , this method
uses the poly view’s default recognition settings.

Recognize

Recogni ze(strokes, config, doGroup)

Recognizes the strokes using the specified r ecConf i g frame and returns a
correction information frame.

strokes An array of stroke bundles (as returned by the
ExpandUni t function), or compressed ink (as returned
by the Get | nkAt function), in which each element of
the array contains the strokes for a single word.

config The r ecConf i g frame to be used by this function.

doGroup The value t r ue specifies that the strokes are to be
regrouped as part of the recognition process. The value
ni | specifies that the grouping specified by the stroke
bundle or ink bundle is to be retained.

Recognition Functions

CHAPTER 8

Recognition System Reference

Dictionary Functions

These functions allow you to look up words in the built-in dictionaries, to
manipulate the review dictionary, and to work with your own custom
dictionaries.

GetRandomWord
Get RandomWr d(minLength, maxLength)

Returns a string that is a word chosen at random from the common word
dictionary. The string returned by this function is at least minLength
characters long but not more than maxLength characters long. This function
does not return any word longer than 20 characters.

The Get Random\\or d function uses random numbers generated by the
system to select words from the dictionary. To begin a new sequence of
random words, you must first initialize the random number generator using
the Set Randonfeed function. To repeat a sequence of words, pass to the
Set RandonfBeed function the same argument that was used to generate the
original sequence of random words. You need only call Set Randonfeed
once to begin a new sequence of random words. For more information, see
the discussion of the Set RandonSeed function in Chapter 26, “Utility
Functions,” in Newton Programmer’s Guide.

minLength The minimum number of characters in words returned
by this function.

maxLength The maximum number of characters in words returned
by this function. This function does not return words
longer than 20 characters, regardless of the value
specified by this argument.

LookupWordInDictionary

LookupWor dl nDi cti onar y(dictlD, word)

Returns t r ue if the specified word or an alternate capitalization form of the
word is present in the specified dictionary. This function returns ni | if
the word is not found.

Recognition Functions 8-91

CHAPTER 8

Recognition System Reference

Note

This function does not strip punctuation from word before
searching for it in the specified dictionary. O

dictID The dictionary identifier specifying the dictionary to be
searched.
word The string to be found in the specified dictionary. This

string must not contain more than 32 characters.

DeleteWordFromDictionary

Del et eWor dFr onDi ct i onar y(dictlD, word)

Removes the specified word from the RAM-based dictionary indicated by
dictID, returning t r ue if the word is removed and ni | if it is not. A ni |
result usually indicates that the specified word was not found in the
specified dictionary, but it also may indicate an error. For example, it is an
error to call this function on a static dictionary.

dictlD The dictionary identifier specifying the dictionary to be
searched.
word The string to be removed from the specified dictionary.

NewDictionary

NewDi ct i onar y(dictionaryKind)

Creates a new RAM-based dictionary and returns a dictionary ID for it. The
dictionary ID is used in the other custom dictionary functions.

dictionaryKind Specifies how the dictionary is to be used. Currently,
only the symbol ' cust omhas any meaning as an
argument to this function. If you pass ' cust om the
dictionary is used for recognition only in views where it
is specified in a di cti onari es slot in conjunction with
the vCust onDi cti onari es view flag. For more
information, see “Using Your RAM-Based Custom
Dictionary” (page 10-28) in Newton Programmer’s Guide.

8-92 Recognition Functions

CHAPTER 8

Recognition System Reference

Note

Although the token returned by the NewDi ct i onary
function currently evaluates to an integer in the NTK
Inspector, the type of value returned by this function may
change on future Newton devices. Do not rely on the
NewDi ct i onary function returning an integer. O

DisposeDictionary

Di sposeDi cti onar y(dictionary)

Deletes the specified RAM-based dictionary. This function’s return value is
unspecified.

dictionary The dictionary to be deleted

AddWordToDictionary
AddWbr dToDi ct i onar y(dictionary, wordString)

Adds the specified word to the specified RAM-based dictionary, returning
t r ue if the word was added successfully. If the word could not be added,

this function returns ni | . This function does not strip punctuation before

adding wordString to dictionary.

IMPORTANT

Do not use the AddWor dToDi ct i onar y function to add
words to the personal word list or user dictionary. Instead,
use the AddWor d method of the Revi ewDi ct object for this
purpose. a

dictionary The dictionary to which this function adds the specified
string.
wordString The string to be added to the specified dictionary. This

string must not contain more than 32 characters.

Recognition Functions 8-93

8-94

CHAPTER 8

Recognition System Reference

GetDictionaryData

Get Di cti onar yDat a(dictionary)

Returns a binary object or virtual binary object representing the specified
dictionary’s word list. To save dictionary data in a soup, place the object that
this function returns in a slot in a frame that you add to a soup. For a code
example, see “Saving Dictionary Data to a Soup” (page 10-27) in Newton
Programmer’s Guide.

dictionary The dictionary from which this function extracts data.

SetDictionaryData

Set Di cti onar yDat a(dictionary, binaryObject)

Retrieves dictionary data (words) from the specified binary object and loads
them into the specified dictionary. You can use this function to populate a
blank dictionary with dictionary items stored in a soup. This function’s
return value is unspecified.

dictionary The dictionary into which this function loads data.

binaryObject The binary object or virtual binary object from which
this function extracts data.

User Dictionary Functions and Methods

This section describes methods available from the review dictionary object in
the root view. You can send messages to this object to manipulate the user
dictionary and the expand dictionary.

You can use code similar to the following to get a reference to the review
dictionary object:

| ocal reviewDict := GetRoot().reviewD ct;

Note

Future versions of the system are not guaranteed to have
this slot. You must verify that the returned value is non-ni |
before using it. O

Recognition Functions

CHAPTER 8

Recognition System Reference

Open
reviewDict: Cpen()

Displays the Personal Word List slip. If there are items in the auto-add
dictionary, this method displays the Recently Written Words slip along with
the Personal Word List slip.

AddWord
reviewDict: AddWor d(word)

Adds the specified word to the user dictionary. If the word is added
successfully, this method returns the value t r ue. You must call the
SaveUser Di cti onary method to make changes persistent. If the word is
already in the user dictionary or one of the standard system dictionaries,
then the word is not added and the return value of this method is
unspecified.

This method updates the display in the Personal Word List slip automatically
if it is open. An undo action is posted for this operation. For performance
reasons, the dictionary is not flushed to the internal store for each word that
is added.

word The string to be added to the user dictionary. This string
may be capitalized or contain punctuation.

RemoveWord

reviewDict: RemoveWor d(word)

Removes the specified word from the user dictionary. This method returns
t r ue if the word was removed successfully; otherwise it returns ni | . If the
Personal Word List is open, the display is updated automatically. An undo
action is posted for this operation. For performance reasons, the changed
dictionary is not written to the system soup; after calling this function, you
must call the SaveUser Di ct i onary function to make dictionary changes
persist.

Recognition Functions 8-95

8-96

CHAPTER 8

Recognition System Reference

word The word to be removed from the user dictionary. If this
string’s case does not match that of the string in the user
dictionary exactly the dictionary entry is not removed.

LoadUserDictionary

LoadUser Di cti onary()
Loads the review dictionary into RAM from the system soup.

Most flags that enable text recognition include this dictionary automatically
in the set of dictionaries available to the view performing text recognition.
Therefore, you usually do not need to call this function yourself—the system
calls it whenever the Personal Word List slip is opened or the system is reset.

SaveUserDictionary

SaveUser Di cti onary()

Writes the user dictionary to the system soup, saving any changes that have
been made to the dictionary. You must call this function to make review
dictionary changes persistent.

AddExpandWord

reviewDict: AddExpandWor d(word, expandedWord)

Adds a word and its expanded version to the expand dictionary. The word
must be recognized before it can be expanded, so you must first invoke the
AddWor d method to add the word to the user dictionary. If the word is not
already in the expand dictionary and can be successfully added, the
AddExpandWr d method returns the value t r ue; otherwise, its return value
is unspecified. If the Personal Word List slip is open, the display is updated
automatically. An undo action is posted for this operation. For performance
reasons, this method does not write the changed dictionary to the internal
store.

word The abbreviated version of expandedWord to be added to
the expand dictionary.

expandedWord The word to be added to the user dictionary.

Recognition Functions

CHAPTER 8

Recognition System Reference

GetExpandedWord
reviewDict: Get ExpandedWor d(word)

Looks for the specified word in the expand dictionary and returns the
expansion if the word is found. If the word is not found in the expand
dictionary, the return value of this method is unspecified.

word The word to be found in the expand dictionary.

LoadExpandDictionary

LoadExpandDi cti onary()

Loads the expand dictionary from the internal store into RAM.

SaveExpandDictionary

SaveExpandDi cti onary()

Writes the expand dictionary from RAM into the internal store.

Auto-Add Dictionary Functions and Methods

This section describes functions and methods you can use to manipulate the
auto-add dictionary. This dictionary is accessible from the root view. You can
use code similar to the following example to get a reference to this object:

| ocal aut oAdd: = Get Root () . aut 0Add;

Note

Future versions of the system are not guaranteed to have
this slot. You must verify that the returned value is non-ni |
before using it. O

This section describes messages you can send to this object to manipulate the
auto-add dictionary.

Recognition Functions 8-97

8-98

CHAPTER 8

Recognition System Reference

Open

autoAdd: Qpen()
Displays the Recently Written Words slip.

AddAutoAdd

AddAut oAdd(word)

Adds the specified word to the auto-add and user dictionaries if the base
word (word without punctuation) is not present in the set of dictionaries
enabled by the vChar sAl | owed flag. This function returns t r ue when the
word is added successfully. You can determine the base word by passing
word to the LookupWér d global function.

If the auto-add dictionary already contains the maximum number of words
allowed (currently 100), this function displays the notify icon, posts a notify
action and does not add the new word. For information about the notify icon
and notify actions, see “Additional System Services” (page 17-1) in Newton
Programmer’s Guide

Note

When the printed recognizer is enabled, new words are not
added to the user dictionary automatically. O

RemoveAutoAdd

RenoveAut oAdd(word)

Removes the specified word from the user and auto-add dictionaries.

User Configuration Functions

These functions allow you to manipulate recognition-related user
preferences data; for example, your application can use these functions to
save and manage recognition settings for multiple users. These functions are
supported only on version 2.0 of the Newton OS. These functions manage
only recognition-related user preference settings; they have no effect on any
other user preferences.

Recognition Functions

CHAPTER 8

Recognition System Reference

GetUserSettings
Get User Settings ()

Returns a frame containing the current user recognition settings. The frame
this function returns is suitable for use as the argument to the

Set User Set t i ngs function. Do not modify the frame this function returns,
or rely on any values you may find in it. The format and vlaues in this frame
may change in future versions of the system.

SetDefaultUserSettings

Set Def aul t User Settings ()
Sets recognition-related user preference settings to their default
values.

SetUserSettings
Set User Set ti ngs (savedSettings)

Sets user preferences for recognition as specified.

savedSettings Recognition preferences frame returned by the
Get User Set ti ngs function.

Recognition Functions 8-99

CHAPTER 9

Data Storage and Retrieval
Reference

This chapter describes objects, data structures, functions, and methods used
for data storage and retrieval on Newton devices. This chapter begins with a
description of important data structures, including soup definition frames,
index specification frames, query specification frames, soup change
notification callback functions, and package reference information frames.
Subsequent sections provide descriptions of functions and methods grouped
according to the topic with which they are most closely associated, such as
stores, virtual binary objects (VBOs), soups or union soups, tags, soup
changes, queries, cursors, soup entries, and mock entries.

Data Structures

This section describes data structures related to the Newton data storage
system, including soup definitions and specification frames for single-slot
indexes, multiple-slot indexes, and tags indexes. This section also describes
query specification frames, tags query specification frames, callback
functions for change notification, and package reference information frames.

Data Structures 9-1

CHAPTER 9

Data Storage and Retrieval Reference

Soup Definition Frame

Soup definition frames are used to create soups on demand and to provide
information about soups to the system, to other applications, and to the user.
This section describes the slots present in soup definition frames. For a
description of how to use soup definitions, see “Registering and
Unregistering Soup Definitions” (page 11-33) in Newton Programmer’s Guide.

The soup definition frame specifies the soup’s name, its user-visible name,
the application to which it belongs, descriptive strings used to present
information to the user, and a default set of indexes to be created along with
any soup created from this definition.

The soup definition frame contains the following slots:

Slot descriptions

nane Required. A string that identifies the soup to the system.
This string must be unique among the names of all
soups on the store. For more information about naming
soups, see “Naming Soups” (page 11-32) in Newton
Programmer’s Guide.

user Nane Required. A string that is the user-visible name for this
soup; for example, this string is displayed as the soup’s
name in the Extras Drawer.

owner App Required. The application symbol identifying the
application to which this soup belongs. For more
information about application symbols, see
“Application Symbol” (page 2-11) in Newton
Programmer’s Guide

owner AppNarme Required. The user-visible string identifying the
application to which this soup belongs.

user Descr Required. A string that is the user-visible description of
this soup. This string provides information about the
purpose of the soup and the data it contains; for
example, this string might advise the user not to delete
the soup accidentally.

Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

i ndexes

i ni t Hook

Data Structures

Required. An array of index specification frames. Each
frame in this array describes one index in the default set
of indexes with which this soup is created. For detailed
descriptions of index spec frames, see “Single-Slot Index
Specification Frame” (page 9-5) and “Multiple-Slot
Index Specification Frame” (page 9-6).

Optional. Any time this soup definition is used to create
a member of a union soup, the system executes the

i ni t Hook function specified by this slot. This slot can
hold a symbol or a callback function object. If this slot
holds a function object, the function is executed directly;
otherwise, the symbol it contains is sent to the base
view of the application specified by the value of the
owner App slot of the soup definition. That application
must define in its base view a slot containing a function
to be executed when this message is sent.

The i ni t Hook function is meant to provide a means of
seeding a new soup with initial values. If your

i ni t Hook function uses auto-transmit methods such as
AddXmi t, it must pass ni | as the second argument to
these functions to suppress the transmission of soup
change notification messages. Note that the system
sends a ' soupCr eat ed notification after it executes
your i ni t Hook function.

Regardless of whether the function resides in the
i ni t Hook slot or the application’s base view, it must be
of the following form:

nyFn : = func (soup, soupDef) begin ...end

soup The soup on which this function operates.
This value is always a single soup, not a
union soup; thus your i ni t Hook
function should not invoke union soup
methods.

9-3

CHAPTER 9

Data Storage and Retrieval Reference

soupDef The soup definition from which soup was
created; also, the soup definition that

defines this i ni t Hook function.

The following code fragment provides an example of a

typical i ni t Hook function:

Myl ni t HookCal | back: func(soup, soupDef)
begi n
soup: AddFl ushedXmi t({aSlot: "Entry A"}, nil
soup: AddFl ushedXmit ({aSlot: "Entry B'}, nil
end;

)
)

For related information, see the description of the
NewtApp framework’s newt Soup object, which
provides methods for creating soups and filling them

with entries.

A typical soup definition looks like the following code fragment:

| ocal aSl ot ndexSpec :
type: 'string};

| ocal bSl ot ndexSpec :
type: 'int};

| ocal mySoupDef : =

{structure: "slot, path: "aSlot,

{structure: 'slot, path: 'bSlot,

{ /Il string that identifies this soup to the system

nanme: "nyApp: nySi g,

/1 string that is user visible nane

user Nanme: "My Application soup”,

/1 application synbol

owner App: ' | myApp: nySi g ,

/1 user-visible nane of app that owns this soup
owner AppNanme: "My Application”,

/1 user-visible string describing soup

userDescr: "This soup is used by My Application.

Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

/1 array of indexSpec frames - default indexes

i ndexes: [aSl| otlndexSpec, bSlotlndexSpec, ...]

/1 optional function used to initialize the soup
i ni t Hook: symbolOrCallBackFn

Single-Slot Index Specification Frame

This section describes the slots present in single-slot index specification
frames. For general information about index specification frames, see
“Indexes” (page 11-8) in Newton Programmer’s Guide. For a description of how
to use index specification frames, see “Registering and Unregistering Soup
Definitions” (page 11-33) and “Adding an Index to an Existing Soup”

(page 11-36), in Newton Programmer’s Guide.

The index specification frame specifies the kind of index to create, the slot
from which to extract index key values, and the type of data found in the
index key slot.

The index spec frame contains the following slots:

Slot descriptions

structure Required. Specifies whether the soup is indexed on a
single slot or on multiple slots. For a single-slot index,
this value must be the * sl ot symbol.

path Required. A path expression specifying the slot from
which index key values are extracted. For a complete
explanation of path expressions, see The NewtonScript
Programming Language.

IMPORTANT
You cannot use a value stored in a virtual binary object as an
index key. a

type Required. A symbol specifying the type of data stored in
the index key slot. For integer values, specify ' i nt ; for
string values, specify ' st ri ng; for character values,

Data Structures 9-5

9-6

CHAPTER 9

Data Storage and Retrieval Reference

specify ' char ; for real number values, specify ' r eal ;
and for symbolic values, specify ' symbol .

or der Optional. Specifies the sorting order for the index; the

only permissible value is either the * ascendi ng or

" descendi ng symbol. If this slot is missing or has the
value ni |, the index keys are assumed to be in
ascending order.

sortlD Optional. The value 1 specifies the use of the alternate

sort table in ROM, which provides a case and diacritic
sensitive sort order suitable for non-English language
strings. If this slot is missing or has the value ni | , the
default sort table is used. For more information, see
“Indexes” (page 11-8) in Newton Programmer’s Guide.

A typical single-slot index spec looks like the following code fragment:

{

/1 must use this value - index keys are slot val ues
structure:'slot,

/1 entries indexed on this slot

pat h: pathExpr,

/1 data type found in the indexed sl ot

type: symbol,

/1 optional. 'ascending or 'descending

order: symbol,

/1 optional. pass 1 to use alternate sort table
sortl D nil

Multiple-Slot Index Specification Frame

This section describes the index description frame for a multiple-slot index.
Each multiple-slot index can index soup entries on a total of up to six key
values. For more information about multiple-slot indexes, see “Querying on
Multiple-Slot Indexes” (page 11-47) in Newton Programmer’s Guide. For

Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

descriptions of how to use index specification frames to create soup indexes,
see “Using Soups” (page 11-32) and “Adding an Index to an Existing Soup”
(page 11-36), in Newton Programmer’s Guide.

The multiple-slot index specification frame specifies the kind of index to
create, the slots from which to extract index key values, and the types of data

found in those slots.

The multiple-slot index spec frame contains the following slots:

Slot descriptions
structure

pat h

Note
The pat h and t ype

of elements. O

type

order

Data Structures

Required. Specifies whether the soup is indexed on a
single slot or on multiple slots. For a multiple-slot
index, this value must be the ' mul ti Sl ot symbol.

Required. An array of path expressions specifying the
slots from which index key values are extracted. The
first element in the array contains the path to the
primary key, the second element contains the path to the
secondary key, and so on. Each multiple-slot index
allows a total of 6 index paths.

arrays must have the same number

Required. An array having any of the symbols
"string,'char,"int,' real or'synbol asits
elements. Each element of this array specifies the type
of the data stored in the slot specified by the
corresponding element of the pat h array in this index
spec frame.

Optional. An array of any of the possible values
"ascendi ng or' descendi ng. Each element of this
array specifies the sorting order for the key stored in the
corresponding element of the pat h array in this index
description frame. If the or der array is missing, all
index keys are assumed to be in ascending order.

9-7

9-8

CHAPTER 9

Data Storage and Retrieval Reference

sortlD Optional. The value 1 specifies the use of the alternate
sort table in ROM, which provides a case- and
diacritic-sensitive ranking suitable for non-English
languages. If this slot is missing or has the value ni I,
the default sort table is used. For more information, see
“Indexes” (page 11-8) in Newton Programmer’s Guide.

A typical multiple-slot index spec looks like the following code fragment.

{

/1 index keys are nultiple slot val ues

structure: 'multiSlot, // rmust use this val ue

/1 up to six path expressions specifying indexed slots
pat h: [pathExprl, pathExpr2, ..., pathExpr6],

/1 data type found in each indexed sl ot

type: [syml, sym2, ...sym6]

/1 optional. 'ascending or 'descending

order: [syml, sym2, ..., sym6]

/1 optional. pass 1 to use alternate sort table
sortID: nil

Tags Index Specification Frame

The tags index stores the tag symbols associated with the entries in a soup.
This index is defined by the tags index specification frame described here.
The tags index specification frame specifies the kind of data to index (in this
case, symbols used as tags), the slot from which to extract this data, and the
kind of index to create (in this case, a tags index.)

A WARNING

Each soup has only one tags index; if you add a tags index to
a soup or union soup that already has one, it replaces the
original tags index. a

Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

The tags index spec frame contains the following slots:

Slot descriptions
structure Required. Specifies whether the soup is indexed on a

single slot or on multiple slots. For a tags index, this
value must be the * sl ot symbol.

pat h Required. A path expression specifying the slot from
which index key values are extracted. In this case, the
index key values are tags, so this expression specifies
the slot in which this soup stores its tags.

type Required. A symbol specifying the type of the data
stored in the index key slot. For a tags index, this value
must be the ' t ags symbol.

A typical tags index spec frame looks like the following code fragment:

{

/1l must use this value - tags are slot val ues
structure: 'slot,

/1 index values (tags) extracted fromthis slot
pat h: pathExpr,

/1 must use this value

type: 'tags,

Query Specification Frame

A query specification frame (or query spec) is passed as the argument to the
Quer y method of soups or union soups. The query spec describes the criteria
that soup entries must meet to be included in the set of entries returned by
the cursor that this query generates. To retrieve every entry in a soup, pass

ni | as the argument to the Quer y method instead of passing a query spec
frame. For more information regarding queries and their results, see
“Queries” (page 11-10) in Newton Programmer’s Guide.

Data Structures 9-9

CHAPTER 9

Data Storage and Retrieval Reference

A query spec frame includes the following slots; missing slots or missing
elements in a slot are presumed to be ni | values:

Slot descriptions
i ndexPat h

begi nKey

begi nExcl Key

endKey

endExcl Key

9-10 Data Structures

Required. This value specifies the path to the slot in
each entry that holds its index key value. Search results
are sorted according to the value of the slot specified by
this value.

Optional. Specifies the key value defining the beginning
of the range over which the cursor generated by this
query iterates. Each end of the range may be inclusive
or exclusive of a given key value; that is, you can
specify key >= begi nKey, key > begi nExcl Key,

key <= endKey, or key < endExcl Key. Either end of
the range may be unspecified, in which case the range
extends all the way to that end of the index. You can't
specify both the inclusive and exclusive forms of the
same end of the range.

Optional. This value specifies a key value to exclude
from the beginning of the range over which the cursor
generated by this query iterates. This slot specifies the
beginning of a range of key values, just as the

begi nKey slot does, but the value of the

begi nExcl Key slot is not included in the range of key
values over which the query searches. For more
information, see the description of the begi nKey slot
on page 9-10.

Optional. Specifies the key value at the end of the range
over which the cursor generated by this query iterates.
For more information, see the description of the

begi nKey slot on page 9-10.

Optional. This value specifies a key value to exclude
from the end of the range over which the cursor
generated by this query iterates. This slot specifies the

CHAPTER 9

Data Storage and Retrieval Reference

t agSpec

wor ds

entireWrds

t ext

Data Structures

end of a range of key values, just as the endKey slot
does, but the value of the endExcl Key slot is not
included in the range of key values over which the
query searches. For more information, see the
description of the begi nKey slot on page 9-10.

Optional. Contains a tags query specification frame as
described in “Tags Query Specification Frame”
(page 9-13)

Optional. One or more strings to match with word
beginnings in any slot in an entry. Single strings can be
passed as they are or as the sole element of an array.
Multiple strings must be passed as the elements of an
array. This query does not match any strings in the
middle of a word. Because each element in the array is a
string, each “word” in a wor ds query can actually
contain multiple words and punctuation. Awor ds
query is not case sensitive. If you specify multiple array
elements, each string in the wor ds array must appear
somewhere in the entry for it to be included in the
query result.

Optional. The value t r ue specifies that the query is to
match the entire string in the wor ds slot instead of
matching strings beginning with the string in the wor ds
slot.

Optional. A string for which the query searches. This
search is not confined to word boundaries; that is, the
search string is found if it appears anywhere in any
string in any slot in an entry.

9-11

CHAPTER 9

Data Storage and Retrieval Reference

i ndexVal i dTest Optional. A developer-supplied function that tests key
values passed to it and returns a non-ni | value if the
corresponding entry is to be included in the query
result. The i ndexVal i dTest slot contains a function of
the form

i ndexVal i dTest: = func (args) begin ...end;

args This value is a single index key for
queries on single-slot indexes. This value
is an array of keys for queries on
multiple-slot indexes.

The system invokes the i ndexVal i dTest method
before the val i dTest method.

Note that in the following situations the input to the
I ndexVal i dTest function may not exactly match the
entry’s actual index key:

Keys of type' st ri ng are truncated after 39 Unicode
characters (80 bytes, 2 of which are used internally).

Ink data is stripped from ' st ri ng keys.

Subkeys in multiple-slot indexes may be truncated or
missing when the total key size is greater than 80 bytes.

For more information, see “Limitations of Index Keys”
(page 11-52) in Newton Programmer’s Guide.

val i dTest Optional. A developer-supplied function accepting a
soup entry as its argument. The function must return
any non-ni | value for an entry that is to be included in
the set of entries returned by the cursor, and return ni |
for an entry that is not to be included in the set of
entries returned by the cursor. The use of an
i ndexVal i dTest is preferable to the use of a
val i dTest, for performance reasons.

9-12 Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

The val i dTest slot contains a function of the form

val i dTest: = func (entry) begin ...end;
entry The entry to be tested.

secOrder When the soup being queried has an index that
provides internationalized sorting order, the value Tr ue
specifies that cursor find operations such as GoToKey
are sensitive to case and diacritical values in strings. For
more information, see “Indexes” (page 11-8) in Newton
Programmer’s Guide.

The following code fragments provide examples of typical query spec frames:
myQSpec :=nil // return all entries

[l return entries having a nane sl ot
myQSpec : = { indexPath : 'nane}

/1 return entries with both "Bob" and "Apple" in any slot
myQSpec : = {words : ["Bob","Apple"]}

/1 return (10 = entry. nylntegerSlot < 190) entries
mySpec : = {indexPath : 'nylntegerSl ot}

begi nKey : 10,

endExcl Key : 190}

/1 return entries having even values in 'nylntegerSlot
mySpec : = {indexPath : 'nylntegerSl ot}
i ndexVal i dTest: func (key) (key MOD 2) = 0}

Tags Query Specification Frame

The tags query specification frame or tags query spec described here
specifies the use of tags by the Quer y method of soups or union soups. This
frame is placed in the t agSpec slot of the query spec frame presented as the
argument to the Quer y method. In addition to specifying the tags on which

Data Structures 9-13

9-14

CHAPTER 9

Data Storage and Retrieval Reference

to test, the t agSpec frame specifies how the query is to use the specified
tags; for example, whether the query includes or excludes entries having the
specified tags.

The t agSpec slot contains a frame holding one or more of the following
slots, each of which contains a symbol, an array of symbols, or the value ni | .
The order in which symbols appear in the array is unimportant.

Slot descriptions

equal The entry’s tags must equal the set of tags specified by
this slot. Entries with additional tags or missing tags are
not matched. Note that equal : [] returns all
nontagged entries.

al | The entry’s tags must include all tags specified by this
slot. Entries having additional tags are included in the
query result as well.

none Entries having none of the tags specified in this slot
(including entries that have no tags) are included in the
query result.

any Entries having one or more of the tags specified in this
slot are included in the query result.

The following code fragment illustrates the use of a simple tags query spec.
For additional examples of the use of tags query specs, see “Querying for
Tags” (page 11-42) in Newton Programmer’s Guide.

/1 match ("ny text") AND ('tree OR 'flower)

soup: Query({text:"my text",
tagSpec: {any:['tree, 'flower]}});

Callback Functions for Soup Change Notification

This section describes the callback function that your application can register
with the soup change notification mechanism. For more information about
soup change notification, see “Introduction to Data Storage Objects”

Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

(page 11-2) and “Using Soup Change Notification” (page 11-63), in Newton
Programmer’s Guide.

Your callback function is passed as the value of the callBackFn parameter to
the RegSoupChange global function. The RegSoupChange global function
registers this callback to be executed in response to changes in a specified
soup. Note that your callback function must not call the RegSoupChange or
UnRegSoupChange functions.The value your callback function returns is
ignored by the current system.

Your callback function must be of the form

f unc(soupNameString, appSymbol, changeTypeSymbol, changeData) ;

IMPORTANT

This callback function must not call the RegSoupChange or
UnRegSoupChange functions. a

soupNameString A string that is the name of the soup that changed.

appSymbol A unique symbol identifying the application that caused
the change. If this information is not available, the
system passes the ' _unknown symbol to your callback
function.

changeTypeSymbol A symbol indicating the kind of change that occurred;
for possible values, see Table 9-1, immediately following.

changeData The data that changed. The data passed as this
argument varies according to the value of the
changeType parameter; for more information, see
Table 9-1, immediately following.

Table 9-1 Change messages and associated change data
changeTypeSymbol When sent changeData
" entryAdded Entry added The new entry added to the soup.
to soup or
union soup.

Data Structures 9-15

CHAPTER 9

Data Storage and Retrieval Reference

Table 9-1 Change messages and associated change data (continued)
changeTypeSymbol When sent changeData

"entryRenoved Entry deleted A frame having the soup the entry came
from soup or from in its ol dSoup slot and the (former)
union soup. entry that was removed in its ent r y slot. For

example:
{ ol dSoup: theSoup, ent ry: theEntry};

"ent ryChanged Any change The changed soup entry.
to entry data.

"entryMoved Entry moved A frame having the soup the entry came
from one from in its ol dSoup slot and the entry that
soup to moved in its ent r y slot. For example:

ther.
another { ol dSoup: theSoup, ent ry: theEntry}

"entryRepl aced Entry A frame holding the entry that was replaced
replaced with inits ol dEnt ry slot and the replacement
another. entry in its ent r y slot. For example:

{ol dEnt ry: oldOne, ent r y: newOne}

" soupl nf oChanged Any change The soup that changed.
to soup
information
frame.

' soupEnt er s* Soup The soup that became available to the
becomes union soup.

available to
union soup;
for example,
because card
inserted.

9-16 Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

Table 9-1 Change messages and associated change data (continued)
changeTypeSymbol When sent changeData
' souplLeaves*™ Soup The soup that is no longer available; don’t
becomes use this soup, as it is invalid when this
unavailable message is sent.
to union
soup; for
example,
because card
removed.
' soupCreat ed New soup The soup that was created.
created.

' soupDel et ed

' soupTagsChanged

' soupl ndexAdded

" soupl ndexRenoved

Existing soup
deleted.

Several tags
changed.
Send only
when tags are
added by the
AddTags
method;
otherwise,
it’s
unnecessary.

New soup
index or tags
index added.

Existing soup
index or tags
index
removed.

Data Structures

The store from which the soup was removed.

The soup that changed.

A frame having the new version of the soup
in its soup slot and the new index path in its
i ndex slot; for example,

{ soup: relndexedSoup, i ndex: newlndexPath}

A frame having the new version of the soup
in its soup slot and the removed index path
initsi ndex slot; for example,

{'soup: relndexedSoup, i ndex: indexPath}

9-17

CHAPTER 9

Data Storage and Retrieval Reference

Table 9-1 Change messages and associated change data (continued)
changeTypeSymbol When sent changeData
" what The Multiple Value is unspecified. Used when it’s
changes to impractical to report all of the individual
soup, or 1.x changes to a soup; also used by 1.x
application applications that still use the obsolete
made change. Br oadCast SoupChange function.

* This message may not be sent for soups that are not in use. For example, if no cursor object
references the soup, this message may not be sent.

Package Reference Information Frame

The Get PkgRef I nf o function provides information about a specified
package by returning an information frame containing the following slots of
interest to NewtonScript developers. Do not rely on the values of any slots in
this frame that are not documented here; they are for system use only and
subject to change without notice.

Slot descriptions

si ze An integer specifying the package’s uncompressed size,
expressed in bytes.

store The store on which the package resides.

title The string that is the name of the package.

version The integer that is the version number of the package.

timeStanp The date and time the package was installed, expressed

as an integer returned by the Ti ne global function.
creationbDat e An integer specifying the date the package was created.

copyProtection Non-ni | value specifies that the package is copy
protected.

di spat chOnly Non-ni | value specifies that this package is a
dispatch-only package.

copyri ght Copyright information string.

9-18 Data Structures

CHAPTER 9

Data Storage and Retrieval Reference

conpr essed Non-ni | value specifies that the package is compressed.

cnpr sdSz Integer specifying the compressed size of package,
expressed in bytes.

nunPart s Integer specifying the number of parts in the package.

parts Array of parts comprising this package. If the package is

not active, references to these parts (or objects in them)
may be invalid. Do not access parts of inactive packages.

part Types Array of part type symbols; each element in this array
specifies the part type of the corresponding element in
the par t s array.

Data Storage Functions and Methods

This section describes all Newton data storage functions and methods.
Methods are listed under the object that defines them or the object on which
they operate. Global functions are listed under the object on which they
operate.

Package Functions and Methods

A package is an object that encapsulates code, scripts, and resources as a
Newton application; for more information, see “Packages” (page 11-7) in
Newton Programmer’s Guide.

The following functions and methods allow you to work with packages.

GetPackageNames

Get PackageNanes(store)

Returns an array having elements that are the names of all packages present
on the specified store, including inactive (frozen) packages.

store The store this function tests.

Data Storage Functions and Methods 9-19

CHAPTER 9

Data Storage and Retrieval Reference

GetPackages

CGet Packages()

Returns an array of packages currently active in the Newton system. Each
array element is a frame containing the following slots:

Slot descriptions

id An integer that identifies this package to the system.

si ze An integer that is the uncompressed size of the package,
expressed in bytes.

title A string that is the name of the package.

store The store on which the package resides.

ver si on An integer that is the package’s version number.

ti meSt anp The time the package was installed, expressed as an

integer returned by the Ti ne global function.

copyProtection Non-ni| value specifies that this package is not to be
replicated by the Newton system.

IMPORTANT

Because the current package installation process is not
reentrant, you cannot call the Get Packages function from
your part’s | nst al | Scri pt function or RenmoveScri pt
function. (The system calls these functions in the process of
installing or removing a package.) a

GetPkgRef

Get PkgRef (name, store)
Returns a pkgRef reference to the specified package on the specified store.
name The string that is the name of the package.

store The store on which the package resides.

9-20 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

GetPkgRefInfo

Get PkgRef | nf o(pkgRef)

Returns a frame containing information about the specified package. For a
complete description of this frame, see “Package Reference Information
Frame” (page 9-18).

pkgRef Package reference specifying the package for which this
function returns information.

SuckPackageFromBinary

store: SuckPackageFr onBi nar y(binary, paramFrame)

Creates a package from the specified binary object’s data and installs the new
package on the specified store.

binary The binary object supplying this package’s data.

paramFrame The value ni | or a frame containing information used
to build the package. When this value is non-ni | itis a
frame that may contain the following slots and values:

cal | backFr equency
The number of bytes to read before
executing the callback function again; set
to 0 when no callback function is supplied.

cal | back Optional callback routine; set to ni | if no

callback is supplied. This callback is
commonly used for the implementation of
a progress indicator. The callback function
must be a function object of the form

f unc(callbackinfo)

begin

/1 do soret hi ng w callbackinfo
end

Data Storage Functions and Methods 9-21

9-22

CHAPTER 9

Data Storage and Retrieval Reference

SuckPackageFromEndpoint

callbacklInfo
A frame containing the following slots:
packageSi ze
Number of bytes in the
package.
nunber O Part s
Number of parts in the
package.
packageNane
Name of the package.
current Par t Nunber
Index of the part currently
being read.
anount Read
Number of bytes of the
package total read so far.

store: SuckPackageFr onEndpoi nt (endPoint, paramFrame)

Creates a package using data read from the specified endpoint and installs
the new package on the specified store.

endPoint The endpoint supplying this package’s data.

paramFrame The value ni | or a frame containing information used
to build the package. This frame may contain the
following slots and values:

cal | backFr equency

cal | back

Data Storage Functions and Methods

The number of bytes to read before
executing the callback function again; set
to 0 when no callback function is supplied.

Optional callback routine; set to ni | if no

callback is supplied. This callback is
commonly used for the implementation of

CHAPTER 9

Data Storage and Retrieval Reference

IsPackage

a progress indicator. The callback function

must be a function object of the form
f unc(callbackinfo)

begi n

/ /1 do sonet hi ng w callbackinfo

end

callbackinfo
A frame containing the following slots:

packageSi ze
Number of bytes in the
package.
nunber O Part s
Number of parts in the
package.
packageNane
Name of the package.

cur rent Part Nunber
Index of the part currently
being read.

anount Read
Number of bytes of the
package total read so far.

| sPackage(obj)

Returns a non-ni | value if the object to be tested is a package reference;

otherwise, returns ni | .

obj

Data Storage Functions and Methods

The object to be tested.

9-23

9-24

CHAPTER 9

Data Storage and Retrieval Reference

IsPackageActive

| sPackageAct i ve(pkgRef)

Returns a non-ni | value when the specified package is active; otherwise,
returns ni | .

pkgRef A pkgRef reference, as returned by the Get PkgRef
global function.

IsValid

I sVal i d(obj)

Returns the value t r ue if its argument references an object in valid memory.
Returns ni | for invalid objects such as references to objects residing on a
card that is no longer available. This function always returns the value t r ue
for immediate objects. (For a complete list of NewtonScript immediate
objects, see The NewtonScript Programming Language.) Note that soup and
store objects supply their own | sVal i d methods; do not use the global
function | sVal i d to test these kinds of objects.

obj The object to be tested.

A WARNING

This function tests only whether the object passed as its
argument resides in valid memory; it does not follow
references that the object may contain. Thus, its use does not
cause the display of the “Newton needs the card” slip.
However, if the object to be tested is a frame containing a
slot that references an object on a storage card that has been
removed, the frame itself may test valid even though it
contains an invalid reference. In this situation, you would
need to use the | sVal i d function to test each slot in the
frame recursively to find the slot containing the invalid
reference. a

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

ObjectPkgRef
oj ect PkgRef (obj)

Returns a package reference to the package containing the specified object.
This function returns ni | if the object does not reside in a package or the
object is a NewtonScript immediate. (For a complete list of NewtonScript
immediate objects, see The NewtonScript Programming Language.)

obj The NewtonScript object to be tested.

MarkPackageBusy

Mar kPackageBusy(pkgRef, appName, reason)

Marks the specified package as busy. Any attempt to perform an operation
that deactivates a busy package (such as moving or removing it) causes the
display of a warning that allows the user to cancel the operation before the
package is deactivated. However, if the user proceeds with the operation that
deactivates the busy package, your application must handle resultant error
conditions gracefully. This function’s return value is unspecified.

You should mark a package as busy if its deactivation will cause serious
problems; for example, a store part that provides critical data may be marked
busy while it is in use. To avoid inconveniencing the user, you must call the
Mar kPackageNot Busy function as soon as possible after calling the

Mar kPackageBusy function.

pkgRef The package on which this function operates. This value
is a package reference returned by the Get PkgRef
global function.

appName String describing the entity requiring the package.
Usually this value is the string returned by the
Get AppNane function.

reason Warning string displayed to the user.

Data Storage Functions and Methods 9-25

9-26

CHAPTER 9

Data Storage and Retrieval Reference

MarkPackageNotBusy

Mar kPackageNot Busy (pkgRef)

Reverses the effects of the Mar kPackageBusy function. This function’s
return value is unspecified. To avoid inconveniencing the user, you must call
the Mar kPackageNot Busy function as soon as possible after calling the
Mar kPackageBusy function.

pkgRef The package on which this function operates. This value
is a package reference returned by the Get PkgRef
global function.

SafeMovePackage

Saf eMovePackage(pkgRef, destStore)

Moves the specified package to the specified store. If the package is busy, this
function warns the user to cancel the operation before deactivating the
package. (Moving a package requires that it be deactivated, moved, then
reactivated.) This function’s return value is unspecified.

pkgRef The package on which this function operates. This value
is a package reference returned by the Get PkgRef
global function.

destStore The store to which the specified package is moved.

A WARNING

Do not call this function from your application part’s
Install Script function or RenbveScri pt function. a

SafeRemovePackage

Saf eRenmovePackage(pkgRef)

Removes the specified package. If the package is busy, this function warns
the user to cancel the operation before deactivating the package. (Removing
a package requires that it be deactivated first.) This function’s return value is
unspecified.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

A WARNING

Do not call this function from your application part’s

I nstal |l Scri pt function or RenobveScri pt function. a

pkgRef The package on which this function operates. This value
is a package reference returned by the Get PkgRef
global function.

SafeFreezePackage

Saf eFr eezePackage(pkgRef)

Deactivates the specified package until it is activated by the ThawPackage
function. The Saf eFr eezePackage function’s return value is unspecified.

A WARNING

Do not call this function from your application part’s
I nstal |l Scri pt function or RenoveScri pt function. a

pkgRef The package on which this function operates. This value
is a package reference returned by the Get PkgRef
global function.

ThawPackage
ThawPackage(pkgRef)

Reverses the effects of the Saf eFr eezePackage function. The
ThawPackage function’s return value is unspecified.

pkgRef The package on which this function operates. This value
is a package reference returned by the Get PkgRef
global function. The package this value represents must
have been deactivated previously by the
Saf eFr eezePackage function.

Data Storage Functions and Methods 9-27

9-28

CHAPTER 9

Data Storage and Retrieval Reference

Store Functions and Methods

A store is a logical data repository on a physical storage device. For more
information, see “Introduction to Data Storage Objects” (page 11-2) and
“Stores” (page 11-6) in Newton Programmer’s Guide.

You can use the functions and methods described in this section to

= get information about currently available stores

» get and set the information frame that describes the store and its contents
= create soups

= write soups and packages to a store

= get lists of soups present on a store

= execute multiple operations as a single transaction with respect to a store

AtomicAction

store: At om cAct i on(myAction)

Executes the myAction function as a transaction, meaning that if its
operations do not all succeed, the changes to store caused by myAction are
undone and the store is returned to the state it was in before the myAction
function executed.

In order to provide this service, the system caches the changes made by the
myAction function before making them permanent. Therefore, you must
avoid doing large amounts of work from within the myAction function or the
At om cAct i on method will fail due to insufficient cache space.

Changing a small number of logically related entries falls within this
method’s intended use, while changing every entry in a soup does not. For
example, you might change the Names soup entries for the company name
of all the members of a company as an atomic action—that way;, if an error
occurs, you are ensured that the entries are not left in an inconsistent state
(where some members of the company have the old name and some have the
new name).

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

myAction Application-defined function object accepting no
arguments.

BusyAction

store: BusyAct i on(appSymbol, appName, myAction)

Calls the myAction function object with the store marked busy until the
myAction function returns. Unlocking the card switch on a store marked busy
causes the “Newton needs the card...” slip to be displayed. The

BusyAct i on method returns the result of the action function.

appSymbol Unique symbol identifying the application that posted
the busy action.

appName String displayed in the “Newton needs the card...” slip
as the user-visible name of the application that posted
the busy action.

myAction Application-defined function object accepting no
arguments. The system calls this function with the store
marked busy until the function returns.

CheckWriteProtect
store: CheckW it eProtect ()

Throws an exception if the store is locked or in ROM. The return value of this
method is unspecified.

This method throws | evt . ex. fr. st or e| (- 48020) when the store is in
ROM. If the store is not in ROM, but is write protected, this method throws
| evt.ex.fr.store| (-10605). Contrast with the | sReadOnl y store
method, which returns a non-ni | value when a specified store can’t be
written.

You can use this function to test whether the store can be written before
executing lengthy operations. For an operation that completes quickly, you
may prefer to attempt the operation and catch exceptions as they occur. The
following code fragment provides an example of the use of this function:

Data Storage Functions and Methods 9-29

CHAPTER 9

Data Storage and Retrieval Reference

[lexit if we can't wite
mySt or e: CheckWiteProtect();
/1 performpotentially |engthy operation
| ocal nySpecial Fn := func ()
begi n
myUSoup : = Get Uni onSoupAl ways(ROM Car df i | eSoupNarre) ;
nmyCurs : = nyUsoup: Query({begi nKey: "Apple", endKey:"Apple");
while e := nyCurs: Entry() do
/1 do sonething to every "Apple" entry here
end;
nmy St or e: BusyActi on(' | myApp: nySi g ,
Get AppNane(' | myApp: nySi g),
nySpeci al Fn) ;

CreateSoupXmit

store: Cr eat eSoupXmi t (soupName, indexArray, changeSym)

Creates a soup called soupName on the specified store, returns a reference to

the newly created soup object, and transmits a soup change notification. Any

existing union soups with the same name are updated to include the newly
created soup, as are any existing cursors. The soup this method creates does
not have a soup information frame.

soupName A case-insensitive string up to 39 characters long that
specifies the name with which the soup is to be created.

This name must be unique among all soups on the store.

indexArray An array of index specification frames or ni | . For more

information, see “Indexes” (page 11-8) in Newton

Programmer’s Guide, For detailed descriptions of various

kinds of index spec frames, see “Single-Slot Index
Specification Frame” (page 9-5), “Multiple-Slot Index
Specification Frame” (page 9-6), and “Tags Index
Specification Frame” (page 9-8) in Newton Programmer’s
Reference.

9-30 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

changeSym A unique symbol identifying the application that
created the soup; usually this value is the application
symbol or some variation on it. Pass ni | as the value of
this parameter to avoid transmitting a soup change
notification.

Erase

store: Er ase()

Erases all contents of the specified store. This method’s return value is
unspecified.

GetAllinfo
store: Get Al I I nfo()

Returns the store’s information frame. This special-purpose method is
intended for use by backup/restore applications only; most applications
need not use it. Unless an application stores data in this frame, it may not
exist on every store. Applications can use the Get | nf o store method to get
their own slot from the store’s information frame. For more information, see
the description of the Get | nf 0 method.

Getinfo

store: Get | nf o(slotSymbol)

Returns the contents of the specified slot in the store’s information frame.
Unless an application stores data in it, the information frame may not exist
on every store. This function returns ni | if the store information frame does
not exist. Applications can create a slot in the information frame to store card
data, such as the last time the application encountered a particular card. For
more information, see the description of the store: Set | nf 0 method.

slotSymbol The slot to be returned. This value must be a symbol.
Applications should create only a single slot in the store
information frame and should store minimal amounts
of data in it.

Data Storage Functions and Methods 9-31

9-32

CHAPTER 9

Data Storage and Retrieval Reference

GetDefaultStore

Get Def aul t St or e()

Returns a reference to the store on which new items are created by default.
The default store is specified by the user.

GetSignature

store: Get Si ghat ur e()

Returns an integer that is the store’s signature. The store signature is a
pseudo-random integer assigned by the system when the store object is
created.

GetName

store: Get Namre()

Returns the name of the specified store as a string value.

GetSoup

store: Get Soup(soupNameString)

Returns the specified soup object from the specified store. If the soup doesn’t
exist, this method returns the value ni | . You can use this method to retrieve
a union soup’s members one at a time but you cannot use this method to
retrieve a union soup object; use the Get Uni onSoupAl ways method for this
purpose.

soupNameString The name of the soup to retrieve, as specified by the
nane slot of the soup definition frame used to create the
soup.

The following code fragment uses the Get Soup method to retrieve the

" mySoup: nySi g" soup from the internal store:

[ocal mySoup := GetStores()[0]: Get Soup(" mySoup: nySi g") ;
/1 nmake sure result is a valid soup
i f mySoup:IsValid() then

/1 do sonething

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

GetSoupNames
store: Get SoupNanes()

Returns an array of strings that are the names of the soups on the specified
store.

GetStores
Get Stores()

Returns an array containing references to all existing stores. Do not modify
this array. The elements of this array are store objects to which you can send
the messages described in the rest of this section. The element occupying the
first position in the array this function returns (Get St or es() [0]) is always
the internal store; however, the meaning of the positions occupied by other
stores in this array cannot be relied upon.

HasSoup

store: Has Soup(soupName)

Returns a non-ni | value if the store specified by store contains the soup
having the name specified by soupName; otherwise, returns ni | .

soupName A string that is the name of the soup for which this
method tests.

IsReadOnly
store: | sReadOnl y()

Returns a non-ni | value if the specified store cannot be written (it could be
on a card that is write protected), and returns ni | if the store can be written.

IsValid
store: I sVal i d()

Returns t r ue if the store can be used. A store becomes invalid when it is
removed, such as when the storage card on which it resides is removed.

Data Storage Functions and Methods 9-33

9-34

CHAPTER 9

Data Storage and Retrieval Reference

SetDefaultStore

Set Def aul t St or e(newDefaultStore) // platformfile function

Sets the default store as specified and returns a reference to the new default
store. Applications should respect the user’s default store preferences rather
than change them. Do not change any user preferences without obtaining
confirmation from the user.

IMPORTANT

This function is not defined in all ROM versions and may be
supplied by the NTK Platform file. Call it using this syntax:

call kSet Default StoreFunc wit h (newDefaultStore) ;
A

newDefaultStore A reference to the store to be set as default.

SetInfo

store: Set | nf o(slotSymbol, value)

Sets the value of the specified slot in the store’s information frame. If the slot
does not exist, this function creates it and sets it to the specified value. This
method’s return value is unspecified.

Applications can create a slot in the information frame to store card data,
such as the last time the application encountered a particular card. Because
the store information frame is shared by all applications, it is strongly
recommended that your application follow the same guidelines for creating
its slot in the store information frame as for creating a slot in another
application’s soup.

IMPORTANT

Values passed to this function must be wrapped in calls to
the Ensur el nt er nal function to avoid unnecessary
appearances of the “Newton need the card...” slip. a

slotSymbol The slot to be set (or created if necessary). This value
must be a symbol. Applications should create only a

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

single slot in the store information frame and should
store minimal amounts of data in it. To help avoid
name-space collisions with other slots in the store
information frame, the name of this slot must be
suffixed with your developer signature.

value The value to be stored in the specified slot.

SetName

store: Set Narre(storeNameString)

Sets the name of the specified store to the storeNameString value and returns
the new name of the store. This special-purpose method is intended for use
only by backup/restore applications. This method’s return value is
unspecified.

storeNameString String that is the store’s new name.

TotalSize

store: Tot al Si ze()

Returns the total size in bytes of the physical medium on which the specified
store resides.

UsedSize
store: UsedSi ze()

Returns the number of bytes used in the store.

Soup Functions and Methods

A soup is an opaque object that provides a persistent, dynamic repository for
data. Unless removed intentionally, soups remain resident on the Newton
device even when the application that owns them is removed. A union soup
object represents multiple same-named soups as a single entity, regardless of
their locations on various physical stores.

Data Storage Functions and Methods 9-35

9-36

CHAPTER 9

Data Storage and Retrieval Reference

The only NewtonScript object you can save in a soup is a frame; however,
any slot in a frame can hold any NewtonScript data type and multiple data
types can reside in a single frame. The system does not impose any
limitations on the number of frames or the kinds of data that may reside in a
soup. Frames added to soups must be self-contained; that is, they should not
hold references to other data structures.

For more information, see the following sections in Newton Programmer’s
Guide: “Introduction to Data Storage Objects” (page 11-2), “Soups”
(page 11-7), and “Entries” (page 11-17).

The functions and methods described in this section allow you to

= obtain a list of soups present on a specified store

= create soups and union soups

= make copies of soups

= write soups and packages to a specified store.

= get information about currently available soups and union soups

» get and set the information frame that describes a soup

RegUnionSoup

RegUni onSoup(appSymbol, soupDef) ;

Registers the specified soup definition for use by union soup methods that
create soups automatically. This method returns the union soup named by
the soupDef soup definition or creates a new union soup from that definition,
as necessary.

appSymbol Unique symbol identifying the application to which this
soup belongs.

soupDef A soup definition frame, as specified in “Soup
Definition Frame” beginning on page 9-2.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

UnRegUnionSoup

UnRegUni onSoup(name, appSymbol) ;

Unregisters the specified soup definition with the system. The return value
of this method is unspecified; do not rely on this value.

name The name of the soup to unregister.

appSymbol Unique symbol identifying the application to which this
soup belongs.

GetUnionSoupAlways

Get Uni onSoupAl way s (soupNameString)

Returns the union soup object named by the value of the soupNameString
parameter. This function never returns ni | ; if necessary, it creates a new
union soup from the registered soup definition that has soupNameString in its
nane slot. For more information, see “Using Newton Data Storage Objects”
(page 11-25) in Newton Programmer’s Guide.

soupNameString The name of the union soup to be retrieved, as specified
by the nane slot in its soup definition frame.

Query
soupOrUSoup: Quer y(querySpec)

Returns a cursor that iterates over the set of soupOrUSoup entries satisfying
the querySpec query specification.

soupOrUsSoup A valid reference to a soup object as returned by the
Get Soup store method or a union soup object as
returned by the RegUni onSoup or
Get Uni onSoupAl ways global functions.

querySpec A query specification frame, as described in “Query
Specification Frame” beginning on page 9-9.

Data Storage Functions and Methods 9-37

9-38

CHAPTER 9

Data Storage and Retrieval Reference

AddToDefaultStoreXmit

uSoup: AddToDef aul t St or eXmi t (frame, changeSym)

Adds the specified frame to the specified union soup and transmits a soup
change notification message. If necessary, this method creates the member
soup to which the frame is added. This method returns the new entry it
creates when the frame is added successfully and throws an exception if the
frame cannot be added. The frame is added to the appropriate member of the
specified union soup according to the user’s default store preferences. (The
user can specify either the internal store or a store on a storage card as the
default store.)

IMPORTANT

The AddToDef aul t St or eXmi t method modifies the frame
argument destructively. For more information, see “Adding
Entries to Soups” (page 11-35) in Newton Programmer’s

Guide. a

frame The frame to be made into an entry in the specified
union soup. This frame must be not be read-only.

changeSym A unique symbol specifying the application that added

the entry; usually this value is the application symbol or
some variation on it. Pass ni | as the value of this
parameter to avoid transmitting a soup change
notification.

AddToStoreXmit

uSoup: AddToSt or eXni t (frame, store, changeSym)

Adds the specified frame to the member of the specified union soup on the
specified store and transmits a soup change notification message. If
necessary, this method creates the member soup to which the frame is added.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

This method returns the new entry it creates when the frame is added
successfully and throws an exception if the frame cannot be added.

frame The frame to be made into an entry in the specified soup.

store The store containing the union soup member to which
this method adds the specified frame as an entry.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass ni | for the value of this
parameter to avoid transmitting a soup change
notification.

IMPORTANT

The AddToSt or eXmi t method modifies the frame argument
destructively. For more information, see “Adding Entries to
Soups” (page 11-35) in Newton Programmer’s Guide. a

AddFlushedXmit

soupOrUSoup: AddFI ushedXmi t (frameOrEntry, changeSym)

Adds the specified frame or entry to the specified soup, returns the newly
added entry, and transmits a soup change notification message. The

AddFl ushedXmi t method is similar to the AddXmi t soup method, except
that the AddFI ushedXmi t method does not create a cached entry. This
method is intended for use in adding entries that won’t be accessed again for
awhile (accessing the entry creates the cached entry). For example, you could
seed a soup with initial values by calling the AddFl ushedXni t method
from within a loop in your soup’s optional i ni t Hook method.

frameOrEntry The frame or entry to be added to the specified soup as
an entry.
changeSym A unique symbol specifying the application that added

the entry; usually this value is the application symbol or
some variation on it. Pass ni | for the value of this
parameter to avoid transmitting a soup change
notification.

Data Storage Functions and Methods 9-39

9-40

CHAPTER 9

Data Storage and Retrieval Reference

AddToStoreFlushedXmit

uSoup: AddToSt or eFl ushedXmi t (frameOrEntry, store, changeSym)

Adds the specified frame or entry to the member of the specified union soup
on the specified store, returns the newly added entry, and transmits a soup
change notification message. The AddToSt or eFl ushedXmi t method is
similar to the AddToSt or eXmi t soup method; however, the

AddToSt or eFl ushedXm t method does not create a cached entry, nor does
itEnsur el nt er nal the frame presented as its argument.

This method is intended for use in adding entries that won’t be accessed for
awhile (accessing the entry creates the cached entry). For example, you could
seed a soup on a specified store with initial values by calling the

AddToSt or eFl ushedXni t method from within a loop in your soup’s
optional i ni t Hook method.

IMPORTANT

The AddToSt or eFl ushedXmi t method modifies the frame
argument destructively. For more information, see “Adding
Entries to Soups” (page 11-35) in Newton Programmer’s

Guide. a

frameOrEntry The frame or entry to be added to the specified soup as
an entry.

store The store containing the union soup member to which
this method adds the specified frame as an entry.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass ni | as this parameter’s value
to avoid transmitting a soup change notification.

AddXmit

soup: AddXmi t (frame, changeSym)

Adds the specified frame to the specified soup, returns the new entry created
from this frame, and transmits a change notification.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

IMPORTANT

The AddXm t method modifies the frame argument
destructively. For more information, see “Adding Entries to
Soups” (page 11-35) in Newton Programmer’s Guide. a

frame The frame to be made into an entry in the specified soup.

changeSym A unique symbol specifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass ni | as this parameter’s value
to avoid transmitting a soup change notification.

GetMember
uSoup: Get Menber (store)

Returns the specified union soup member (single soup) from the specified
store, creating that soup if it doesn’t already exist.

IsValid

soup: I sval i d()

Returns t r ue if the soup can be used. A soup object becomes invalid when
the store on which it resides is removed, such as when a card is removed, or
when the soup itself is deleted.

GetSouplList
uSoup: Get SoupLi st ()

Returns an array of soups comprising the specified union soup.

GetSoupDef
Get SoupDef (soupOrUSoupName)

Returns the soup definition frame for the specified soup.

soupOrUSoupName The name of the soup or union soup for which this
function retrieves the soup definition.

Data Storage Functions and Methods 9-41

9-42

CHAPTER 9

Data Storage and Retrieval Reference

CopyEntriesXmit

soup: CopyEnt ri esXmi t (destSoup, changeSym)

Copies the entries in the source soup to the destination soup and transmits a
change notification. The copied entries preserve the values of the original
entries’” unique identifiers. This method’s return value is unspecified.

destSoup The soup in which the copied entries are written. This
soup must be empty; this function does not check for
duplicate entries in this soup. This soup must not be a
union soup; if it is, this method throws a “cant copy to
union soup” exception
| evt.ex.fr.store| (-48015).

changeSym A unique symbol identifying the application that copied
the entries; usually this value is the application symbol
or some variation on it. Pass ni | for the value of this
parameter to avoid transmitting a soup change
notification.

AddIndexXmit

soupOrUsoup: Addl ndexXni t (indexSpec, changeSym)

Adds an index to the specified soup or union soup and transmits a soup
change notification. If this message is sent to a union soup, the index is
added to all soups in the union. If the specified soup or union soup resides
on a read-only store, this method throws a “store is in ROM” exception

| evt.ex.fr.store| (-48020). This method’s return value is unspecified.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

A WARNING

Each soup has only one tags index; if you add a tags index to
a soup or union soup that already has one, it replaces the
original tags index.

You cannot query a union soup on an index not present in all
its member soups. Sending the Addl ndexXni t message to a
union soup adds the specified index to all soups currently
available to the union; however, any soup introduced to the
union subsequently has only its original complement of
indexes, which may not include the index this method
added. Similarly, any member soup created by the system
has only the indexes specified by its soup definition, which
may not include the index this method added. a

indexSpec An index specification frame. For detailed descriptions
of various kinds of index spec frames, see “Data
Structures” beginning on page 9-1.

changeSym A unique symbol identifying the application that added
the index; usually this value is the application symbol
or some variation on it. Pass ni | as the value of this
parameter to avoid transmitting a soup change
notification.

GetAllinfo
soup: Get Al I I nfo()

Returns the soup’s information frame. Unless an application stores data in
this frame, it may not exist in every soup. This special-purpose method is
intended for use by backup/restore applications only; most applications
need not use it. Applications can use the Get | nf 0 method to get their own
slot from the soup information frame. For more information, see the
description of the Get | nf 0 method on page 9-44. See also “Soup
Compatibility Information” (page 11-21) in Newton Programmer’s Guide.

Data Storage Functions and Methods 9-43

9-44

CHAPTER 9

Data Storage and Retrieval Reference

Getindexes

soup: Get | ndexes()

Returns an array of index specification frames corresponding to the indexes
that exist in the soup.

Getlnfo

soup: Get | nf o(slotSymbol)

Returns the contents of the specified slot in the soup’s information frame;
this function returns ni | if the slot does not exist.

soup The soup having the information frame to be returned;
it must be a single soup, not a union soup. This method
is undefined for union soups.

slotSymbol The slot to be returned. This value must be a symbol.

GetName

soupOrUsoup: Get Nane()

Returns a string that is the name of the soup or union soup object to which
this message is sent.

GetNextUid

soup: Get Next Ui d()

Returns the unique identifier to be assigned to the next entry added to the
soup. This special-purpose method is intended for use by backup /restore
applications. Because the methods that add entries to soups or union soups
assign these identifiers automatically, most applications do not need to use
the Get Next Ui d method.

GetSignature

soup: Get Si gnat ure()

Returns an integer that is the signature for the soup. The signature is a
random integer that identifies the soup uniquely to the system; it is assigned

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

by the system when the soup is created. You can use this value to determine
whether a soup was replaced with another having the same name.

GetSize
soupOrUsoup: CGet Si ze()

Returns the size of the specified soup, expressed in bytes.

GetStore
soup: Get St ore()

Returns a reference to the store on which the specified soup resides.

IsSoupEntry
| sSoupEnt r y(object)

Returns t r ue if the data object passed to this function is a soup entry;
otherwise, returns ni | .

object The object to be tested.

MakeKey

soup: MakeKey ('string, indexPath)
Constructs the index key that would be used for one or more specified values.

You can use this method to determine precisely the index key used for a
specified string; under the following conditions, a string may not match its
key exactly:

= Keys of type 'st ri ng are truncated after 39 Unicode characters.
= Ink data is stripped from 'st ri ng keys.

= Subkeys in multiple-slot indexes may be truncated or missing when the
total key size is greater than 80 bytes.

Data Storage Functions and Methods 9-45

9-46

CHAPTER 9

Data Storage and Retrieval Reference

For code examples, see “Limitations of Index Keys” (page 11-52) in Newton

Programmer’s Guide.

string

indexPath

The string for which this method constructs an index
key. This string need not exist in the soup to which the
MakeKey message is sent. When soup has a multiple-slot
index, the value of this parameter can be an array of
strings; otherwise, this value must be a single string.
Missing elements are presumed to be ni | values. When
the value of this parameter is an array, each of its
elements must hold the data type specified by the
corresponding element of the indexPath array.

The index path associated with the key value specified
by the value of the string parameter. This value must
represent a valid index path in the soup to which the
MakeKey message is sent. When soup has a multiple-slot
index, the value of the indexPath parameter can be an
array of index paths corresponding to the elements of
the array passed as the value of the string parameter;
otherwise, the value of the indexPath parameter must be
a single index path. When making a key for use with a
multiple-slot index, the indexPath parameter must
specify all the slots indexed by a particular multiple-slot
index in the same order as used to generate the index. If
the value of this parameter is missing any of the paths
indexed by a multiple-slot index on the soup, or any of
the paths do not appear in the same order as in the
index spec used to generate the multiple-slot index, this
method throws the “Soup index does not

exist”| evt. ex. fr.store| (-48013) exception.

RemoveAllEntriesXmit

soup: RenoveAl | Ent ri esXmi t (changeSym)

Deletes all entries from the specified soup and transmits a change
notification. The soup object to which this message is sent must be a single

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

soup; this method is not implemented for union soups. This method’s return
value is unspecified.

changeSym A unique symbol identifying the application that
removed the entries; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

RemoveFromStoreXmit

soup: RenoveFr onst or eXni t (changeSym)

Removes the specified soup from its store, deletes all of its entries, and sends
a soup change notification. This method cannot be used on a union soup.
This method’s return value is unspecified.

changeSym A unique symbol identifying the application that
removed the soup; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

RemovelndexXmit

soupOrUsoup: Renmovel ndexXmi t (indexPath, changeSym)

Removes an index from the specified soup or union soup object and
transmits a soup change notification. This method’s return value is
unspecified.

Data Storage Functions and Methods 9-47

9-48

CHAPTER 9

Data Storage and Retrieval Reference

A WARNING

You cannot query a union soup on an index that is not
present in all of its member soups. Sending the

Renpvel ndexXmi t message to a union soup removes the
specified index from all soups currently in the union.
However, any soup introduced subsequently to the union
has its original complement of indexes, which may include
the one this method removed. Similarly, any member soup
created subsequently by the system is created with the
indexes specified in its soup definition, which may include
the index this method removed from other members. a

indexPath The path expression on which the index to remove was
generated; that is, the same index path used to create
the index.

changeSym A unique symbol identifying the application that

removed the index; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

AddWithUniquelDXmit

soup: AddW t hUni quel DXni t (entry, changeSym)

Adds the entry frame to the specified soup as a soup entry having the unique
identifier specified in the entry frame, returns the newly added entry, and
transmits a soup change notification. This method throws an exception if the
specified unique identifier is already used by an entry in the destination
soup.

This special-purpose function is intended only for restoration of soup
data; most applications should not use it. Normally, applications use
the soup: AddXmi t method to add a frame to a specified soup. The
soup: AddXnmi t method generates a new unique identifier for the entry
it adds.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

entry The entry to be added to the specified soup. This value
must be a soup entry rather than a normal frame.

changeSym A unique symbol identifying the application that added
the entry; usually this value is the application symbol or
some variation on it. Pass ni | for the value of this
parameter to avoid transmitting a soup change
notification.

SetAllInfoXmit

soup: Set Al | I nf oXmi t (frame, changeSym)

Writes the specified frame as the soup’s information frame and transmits a
soup change notification. This method’s return value is unspecified.

This special-purpose method is intended for use by backup /restore
applications only; most applications need not use it. Instead, applications
should use the soup: Set | nf oXni t method to store data in a single slot in
the soup information frame. For more information, see the description of the
Set | nf oXmi t method (page 9-50).

A WARNING

The soup information frame holds the soup definition frame
used to create the soup. Loss of the soup definition frame
can lead to the presence of a null union soup. For more
information, see “Null Union Soups” (page 11-23) in Newton
Programmer’s Guide. a

frame The frame to be written as the soup’s information frame.

changeSym A unique symbol identifying the application that
changed the soup information frame; usually this value
is the application symbol or some variation on it. Pass
ni | for the value of this parameter to avoid
transmitting a soup change notification.

Data Storage Functions and Methods 9-49

9-50

CHAPTER 9

Data Storage and Retrieval Reference

SetInfoXmit

soup: Set | nf oXmi t (slotSymbol, value, changeSym)

Sets the value of the specified slot in the soup information frame and
transmits a soup change notification. If the slot does not exist, this function
creates it and sets it to the specified value. This method’s return value is
unspecified.

slotSymbol The slot to be set (or created if necessary). This value
must be a symbol. Applications should create only a
single slot in the soup information frame and should
store minimal amounts of data in this slot. To avoid
name-space collisions with other slots in the soup
information frame, it is strongly recommended that you
incorporate your unique developer signature in this
name.

For more information, see “Soup Information Frame”
(page 11-22) and “Making Changes to Other
Applications’ Soups” (page 11-37) in Newton
Programmer’s Guide.

value The value to be stored in the specified slot.

changeSym A unique symbol identifying the application that
changed the soup information frame; usually this value
is the application symbol or some variation on it. Pass
ni | for the value of this parameter to avoid
transmitting a soup change notification.

SetName

soup: Set Namre(soupNameString)

Sets the name of the soup to the soupNameString string. This method’s return
value is unspecified. If you try to set the name to an invalid value (for
example, one already in use) this method throws an exception. Generally,
you should avoid changing the names of soups (even your own), because
other applications may be using them.

soupNameString The string that is the soup’s new name.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

A WARNING

Do not under any circumstances change the names of the
built-in soups. a

CreateSoupFromSoupDef

Cr eat eSoupFr onSoupDef (soupDef, store, changeSym)

Creates a single soup on the specified store using the specified soup
definition, transmits a' soupChanged notification and returns a reference to
the new soup. Normally, plain soups like the one returned by this function
are created by methods that add entries to union soups.

soupDef The soup definition used to create the new soup.
store The store on which to create the new soup.
changeSym A unique symbol identifying the application that

created the new soup; usually this value is the
application symbol or some variation on it. Pass ni | as
the value of this parameter to avoid transmitting a soup
change notification.

SupplantSoupDef

Suppl ant SoupDef (soup, soupDef)// platformfile function

Installs the specified soup definition in the specified single soup. This
method’s return value is unspecified.

A WARNING

Changing a soup definition frame is not recommended. Use
this function only if you know that what you are attempting
to do will not cause errors or undesirable side effects. a

Data Storage Functions and Methods 9-51

9-52

CHAPTER 9

Data Storage and Retrieval Reference

IMPORTANT

This function is not defined in all ROM versions and may be
supplied by the NTK Platform file. Call it using this syntax:

call kSuppl ant SoupDef Func wi th (soup, soupDef) ;
A

soup The soup on which this method operates. This object
must be a soup, not a union soup.

soupDef The soup definition frame this method installs.

The Suppl ant SoupDef function works on single soups only, not on union
soups. You can use the union soup method Get SoupLi st to retrieve a list of
the member soups currently available to a specified union soup.

You can use the Suppl ant SoupDef function to

s Change the user-visible information for a specified soup. For example,
you could use this function to change the string that the Extras Drawer
displays as the soup’s name.

» Add a soup definition frame to a soup that lacks one. For example, soups
created by system software prior to version 2.0 do not have soup
definition frames.

= Replace the soup definition frame in a soup that already has one. Note
that this may cause inconsistencies with other soups in the union that can
lead to unstable behavior.

Note

This function does not change the soup definition currently
registered with the system—it changes only the local copy of
the definition held by a soup created from that definition. To
change a soup definition registered with the system, you
must replace it completely. To do so, first call the

UnRegUni onSoup function to unregister the current soup
definition, and then call the RegUni onSoup function to
register the new soup definition. O

Because most of the information in a soup definition frame is used only
when the system creates a new soup, the appropriate usage of the
Suppl ant SoupDef function is limited. For example, although you can use

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

this method to change the indexes a soup definition specifies for new soups,
the actual indexes in existing soups are not updated by this method. Soups
created subsequently from this definition may not have the same
complement of indexes as other soups in their union, which may cause
operations on the union soup to fail. Exercise extreme caution when using
this method for any purpose.

The following code fragment provides an example of the proper use of this
function. Note that because this function is supplied by the Newton 2.0
platform file, it must be called using the cal | kFnNameFunc with ()
syntax shown in the example:

/1 unregister old definition
UnRegUni onSoup(" mySoup: nySi g", "' | MyApp: MySi 9|) ;
/'l register new version of soup definition
/1 assunme myNewSoupDef is valid
| ocal uSoup := RegUni onSoup(' | MyApp: M/Si g|, nyNewSoupDef);
/1 update existing soups
foreach nenber in uSoup: Get SoupList() do
begin
call kSuppl ant SoupDef Func with (nmenber, nyNewSoupDef);
/1 perform other housekeepi ng such as addi ng or renoving i ndexes
end;

GetindexesModTime
soup: Get | ndexesMbdTi ne()

Returns the time when the soup indexes were last changed, expressed in the
system’s internal time format as returned by the Ti ne function. Soup index
information is set when the soup is created or restored; when indexes are
added or removed; and when indexed soup entries are added, deleted, or
changed.

Data Storage Functions and Methods 9-53

9-54

CHAPTER 9

Data Storage and Retrieval Reference

GetinfoModTime

soup: Get | nf oMbdTi ne()

Returns the time when the soup info was last changed. Values in the soup
information frame are set when the soup is created or restored. These values
may also be changed by the Set | nf oXmi t and Set Al | | nf oXmi t soup
methods.

Soup Change Notification Functions

These functions allow you to register and unregister callback functions that
the system executes when a specified soup changes in some way; for
example, when soup entries are added or removed, when the soup itself is
created or removed, and so on.

RegSoupChange

RegSoupChange(soupName, callbacklD, callBackFn)

Registers a callback function to be executed whenever the specified soup
changes. This function’s return value is unspecified.

soupName A string that is the name of the soup that changed.

callbackID A unique symbol identifying the callBackFn function to
the soup change mechanism. Because this symbol must
be unique among the symbols registered with this soup,
this value normally includes your application’s
application symbol or some variation on it.

A WARNING

The callBackFn function must not call the RegSoupChange
or UnRegSoupChange functions. a

callBackFn A function executed when the specified soup changes.
The current system ignores the value this function
returns; however, it is recommended that this function
return the value ni | . This function must not call either
of the RegSoupChange or UnRegSoupChange

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

functions. For a detailed description of this function, see
“Callback Functions for Soup Change Notification”
beginning on page 9-14.

UnRegSoupChange

UnRegSoupChange(soupName, callbackiD)

Unregisters the specified callback function with the soup change notification
service for the specified soup only. This function’s return value is unspecified.

soupName A string that is the name of the soup that changed.

callbackiD A unique symbol identifying the callBackFn function to
the soup change mechanism. Because this symbol must
be unique among the symbols registered with this soup,
this value normally includes your application’s
application symbol or some variation on it.

XmitSoupChange

Xm t SoupChange(soupName, appSymbol, changeType, changeData)

Notifies applications registered with the soup change mechanism that the
specified soup has changed. Use this function when you don’t want to
transmit separate notifications for every change to a soup, or to send change
notifications on older Newton devices.

soupName A string that is the name of the soup that changed.

appSymbol Unique symbol identifying the application that caused
the change.

changeType A symbol indicating the kind of change that occurred;
this value must be one of the symbols listed in Table 9-1
(page 9-15).

changeData The data that changed. The data passed as this

argument varies according to the value of the
changeType parameter; see Table 9-1 (page 9-15) for more
information.

Data Storage Functions and Methods 9-55

9-56

CHAPTER 9

Data Storage and Retrieval Reference

Store Part Functions

A store part is an object that encapsulates a read-only store. Because you can
build store parts into application packages, a store part is sometimes referred
to as a package store. For more information, see “Parts” (page 12-3) in
Newton Programmer’s Guide.

This section describes functions that can be used to work with store parts.

GetPackageStore

Get PackageSt or e(name)

Returns the package store having the specified name; otherwise, returns ni | .
As always in NewtonScript, string comparison is not case sensitive. When
more than one currently available store has the specified name, this
function’s behavior is unspecified.

name String that is the name of the package store to retrieve.

GetPackageStores

Cet PackageSt or es()
Returns an array of all available package stores.

A WARNING
Do not modify the array this function returns. a

Methods for Manipulating Tags

A tag is an optional developer-defined symbol used to mark one or more
soup entries. Each soup can contain a maximum of 624 tags. The system
treats missing tags as ni | values.

Tags reside in a developer-specified slot that can be indexed, with the results
stored in a special index called the tags index. The tags index is used to select
soup entries according to their associated symbolic values without reading
the entries themselves into memory; for example, one could select the subset
of entries tagged ' busi ness from the ROM Car df i | eSoupNane soup.
Note that the system allows only one tags index per soup.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

For more information, see “Indexes” (page 11-8) in Newton Programmer’s
Guide.

The methods described here allow you to add, remove, and modify tags in
soups and union soups as well as get information on the currently existing
tags in a specified soup. Methods that modify soups can transmit change
notifications automatically.

AddTagsXmit
soupOrUsoup: AddTagsXmi t (tags, changeSym)

Adds the specified tags to the soup’s tags index as necessary and transmits a
soup change notification. This method requires that the soup already have a
tags index. If this message is sent to a union soup, the tags are added to each
soup in the union. Note that the soup entries themselves are not changed by
this method. This method’s return value is unspecified.

Normally you do not need to add tags to a soup explicitly; when you add an
entry that uses new tags, the system adds them to the tags index
automatically. You should use the AddTagsXmi t method only when unused
tags must be added to the tags index for some reason. For example, if you
wanted to allow the user to file items in a folder category that was not yet
used, you could use the AddTagsXmi t method to add the unused tag to the
tags index. Subsequently, you could use the Get Tags method to retrieve all
the currently available tags (including unused tags) for display to the user.

This method throws the “no tags” exception | evt . ex. fr. store|
(-48027) when the soup has no tags index. When executing this method
causes the maximum number of tags for the specified soup to be exceeded,
this method throws the “invalid tags count” exception

| evt.ex.fr.store| (-48026) and does not add any of the new tags.

Note

Most applications do not need to use this method. When an
entry with one or more new tags is added to the soup, the
new tags are added to the tags index automatically. O

tagsToAdd An array of symbols or a single symbol.

Data Storage Functions and Methods 9-57

9-58

CHAPTER 9

Data Storage and Retrieval Reference

changeSym A unique symbol identifying the application that added
the tag(s); usually this value is the application symbol or
some variation on it. Pass ni | for the value of this
parameter to avoid transmitting a soup change
notification.

GetTags

soupOrUSoup: Get Tags()

Returns an array containing the specified soup’s tags. Returns ni | if the
soup does not have a tags index. If the specified soup is a union soup, the
array returned by this method contains the tags for all soups in the union.

soupOrUSoup The soup or union soup from which this method
retrieves tags.

HasTags

soupOrUSoup: HasTags()

Returns t r ue if the specified soup has a tags index. If the specified soup is a
union soup, this method returns t r ue only if each of the union’s member
soups has a tags index.

soupOrUSoup The soup or union soup to be tested.

Modify TagXmit

soupOrUsoup: Modi fyTagXmi t (oldTag, newTag, changeSym)

Changes the symbol specified by oldTag to that specified by newTag, updates
the soup entries, and transmits a soup change notification. If this message is
sent to a union soup, the specified tag is modified in all soups in the union.
This method returns the value ni | if successful. This method returns ni |
and does nothing if oldTag is not one of the tags in the specified soup.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

Note

If the only difference between oldTag and newTag is case, this
method does nothing because symbolic values are case
insensitive. For example, changing a tag from ' f 0o to ' Foo
has no effect. O

This method throws the “no tags” | evt. ex. fr.store| (-48027)
exception when the soupOrUsoup soup has no tags index. If the newTag tag is
already present in the soupOrUsoup soup’s tags index, this method throws an
“invalid tag spec” exception | evt . ex. fr.store| (- 48028).

soupOrUSoup The soup or union soup for which this method modifies
the specified tag.

oldTag A symbol specifying an existing soup tag.

newTag The new symbol for the tag specified by the oldTag
argument.

changeSym A unique symbol identifying the application that

invoked this method; usually this value is the
application symbol or some variation on it. Pass ni | for
the value of this parameter to avoid transmitting a soup
change notification.

RemoveTagsXmit

soupOrUsoup: RenmoveTagsXni t (tagsToRemove, changeSym)

Removes the specified tags as necessary from the specified soup, updates the
soup entries, and transmits a soup change notification. If this message is sent
to a union soup, the specified tags are removed from all soups in the union.
This method’s return value is unspecified.

This method throws the “no tags” | evt . ex. fr. st ore| (- 48027)
exception when the soup has no tags index.

soupOrUSoup The soup or union soup from which this method
removes the specified tags.

tagsToRemove An array of symbols or a single symbol.

Data Storage Functions and Methods 9-59

CHAPTER 9

Data Storage and Retrieval Reference

changeSym A unique symbol identifying the application that
removed the tag(s); usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

Query and Cursor Methods

This section describes the Quer y method of soups and union soups. This
method retrieves soup data according to criteria specified by a query
specification frame or query spec passed as its argument. This method
returns a cursor, which is an object that iterates over the set of soup entries
meeting the criteria defined by the query spec. A soup entry is a frame that
has been saved in a soup. For more information, see the following sections in
Newton Programmer’s Guide: “Introduction to Data Storage Objects”

(page 11-2), “Queries” (page 11-10), and “Cursors” (page 11-16).

In addition to describing the Quer y method of soups and union soups, this
section describes methods that manipulate the cursor to obtain individual
soup entries.

Clone

cursor: C one()

This method makes a copy of the specified cursor and returns the copy.

Note

Do not use the global functions Cl one or DeepC one to
clone cursors. Instead, use the Cl one method for cursors, as
described here. O

CountEntries

cursor: Count Entri es()

Returns the number of entries matching the query specification that
generated the cursor cursor. If the query spec used to generate the cursor

9-60 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

specifies endrange values (includes any of the begi nKey, begi nExcl Key,
endKey, or endExcl Key slots), this method counts only the entries within
the range over which the cursor iterates.

cursor Soup cursor returned by the Quer y function.

Note

Use this method only when necessary—counting a large
number of entries may be time-consuming and may require
relatively large amounts of heap space. O

Entry

cursor: Ent ry()
Returns the current soup entry referenced by cursor.

If the current entry is deleted from the soup, the entry reverts to a plain
frame (rather than a soup entry), and the method cursor: Ent r y returns the
symbol ' del et ed. Make sure your code can handle gracefully a return
value of ' del et ed from the cursor: Ent r y method.

If the cursor is advanced past the last entry or moved before the first entry in
the set, the current entry pointed to by the cursor has the value ni | . Make
sure your code can also handle gracefully a ni | value returned from the
cursor: Ent r y method.

If the current entry is altered in a way that causes it to move to a different
index position, the cursor moves with it.

EntryKey

cursor: Ent ryKey()

Returns the current entry key without reading the entry into memory.

Data Storage Functions and Methods 9-61

CHAPTER 9

Data Storage and Retrieval Reference

Note

The value this method returns may be different from the
actual index key value for a particular entry; for more
information, see the description of the i ndexVal i dTest
function in “Query Specification Frame” beginning on
page9-9. O

GoTo

cursor: GoTo(entry)

If the specified entry is valid, this method moves the cursor to the specified
entry and returns t r ue. If the specified entry is not valid, the cursor does not
move and this method throws an exception.

entry The entry to which this method moves the cursor. You
cannot create an entry procedurally by creating a frame
having certain slots and values. The only valid entries
are those returned by the various cursor and entry
methods.

GoToKey

cursor: GoToKey (key)

Moves the cursor to the first valid entry having the specified key value, or to
the next entry in index order if no entry has the specified key value, and
returns the entry. If no entries have the specified key value, or the specified
key value is invalid, the cursor tests each entry until it runs out of entries, at
which point this method returns ni | .

key For soups indexed on a single slot, a single index key
value; for soups having a multiple-slot index, an array
of these values. The data type must be that specified by
the soup index used to generate the cursor object that
received the GoToKey message.

9-62 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

MapCursor

MapCur sor (cursor, function)

Applies the specified function to each of the cursor’s entries in turn and
returns an array of the results. If function is ni | , the returned array consists
of the entries themselves.

cursor The cursor supplying the entries against which this
method executes the specified function.

function The function that is to be mapped to the cursor’s
entries. This function must accept a single entry as its
argument.

If this function returns a ni | result for an entry, that

entry is not added to the return array. ni | results are
discarded.

Move

cursor: Move(n)

Moves the cursor n entries forward from its current position and returns that
entry. If n is negative, the cursor is moved backwards. If the cursor is
advanced past the last entry or moved before the first entry in the set of
entries it references, this method returns the value ni | .

n Number of positions (entries) to move the cursor.

Next

cursor: Next ()

Moves the cursor to the next entry in the query result and returns the entry.
If the cursor is advanced past the last entry in the set of entries it references,
this method returns the value ni | .

Data Storage Functions and Methods 9-63

9-64

CHAPTER 9

Data Storage and Retrieval Reference

Prev

cursor: Prev()

Moves the cursor to the previous entry in the set of entries referenced by the
cursor and returns the entry. If the cursor is moved before the first entry in
the set of entries it references, this method returns the value ni | .

Reset

cursor: Reset ()

Resets the cursor to the entry at the beginning of the range over which it
iterates.

ResetToEnd

cursor: Reset ToEnd()

Resets the cursor to the entry at the end of the range over which it iterates.

Status

cursor: St at us()

Returns a symbol describing the validity of the cursor. Cursors on union
soups become invalid when a soup missing an index common to the rest of
the union is included in the union. For more information, see “Testing
Validity of the Cursor” (page 11-54) in Newton Programmer’s Guide.

This method returns the following symbols:

"valid No problems with the soups or indexes used by this
Cursor.

''m ssingl ndex At least one soup referenced by this cursor is missing
one or more indexes common to the other soups in the
union. The missing index may have been specified in
the i ndexPat h or t agsSpec slot of the query spec
used to generate the cursor.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

WhichEnd
cursor: Whi chEnd()

Returns ' begi n or' end when the cursor’s position is outside the range of
valid entries. When the cursor is within the valid range of entries, this
function’s return value is ni | .

Entry Functions

An entry is a frame added to a soup by any of several soup or union soup
methods provided for this purpose. A valid entry can be obtained only as the
result of a cursor method or a method that adds a frame to a soup or union
soup. You cannot create a valid entry by adding certain slots and values to a
frame—the system must create the entry for you from the frame presented to
an entry creation method such as the AddToDef aul t St or eXmi t union
soup method. For more information, see the following sections in Newton
Programmer’s Guide: “Introduction to Data Storage Objects” (page 11-2) and
“Entries” (page 11-17).

This section describes functions used to work with individual soup entries.

EntryChangeXmit

Ent r yChangeXmi t (entry, changeSym)

Writes a cached entry back to its soup and transmits a change notification.
Returns an error if entry is not a valid soup entry; otherwise, this function’s
return value is unspecified.

entry The cached entry this method writes back to its soup.

changeSym A unique symbol identifying the application that
changed the entry; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

Data Storage Functions and Methods 9-65

CHAPTER 9

Data Storage and Retrieval Reference

EntryUndoChanges

Ent r yUndoChanges(entry)

Disposes of the cached entry frame. Any changes made to the cached entry
are lost and the entry reverts to the version stored in the soup. This
function’s return value is unspecified.

entry The soup entry. If this entry contains VBO data, this
function undoes its changes also.

EntryFlushXmit

Ent r yFl ushXni t (entry, changeSym)

Writes the entry cache back to the specified soup entry and transmits a
change notification. This function’s return value is unspecified.

This function is intended for use in changing entries that won’t be accessed
for awhile (accessing the entry creates the cached entry). Use of this function
can result in dramatic savings of time and heap space when writing a large
frame or many smaller frames to a soup. For example, you might call this
function from within a loop that changes a slot in every entry in a soup.

The Ent r yFl ushXmi t function is similar to the Ent r yChangeXni t
function; however, the Ent r yFl ushXmi t function clears the entry cache
instead of updating it.

entry The entry from which the cached frame was originally
extracted.
changeSym A unique symbol identifying the application that

changed the entry; usually this value is the application
symbol or some variation on it. Pass ni | for the value

of this parameter to avoid transmitting a soup change

notification.

9-66 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

EntrylsResident

Ent ryl sResi dent (entry)

Returns t r ue if the specified entry is cached; otherwise, returns ni | . For
more information about the entry cache, see “Entries” (page 11-17) in Newton
Programmer’s Guide.

entry The entry to be tested.

EntryCopyXmit

Ent r yCopy Xmi t (entry, newSoup, changeSym)

Copies the specified entry into the specified soup, returns the copy of entry,
and transmits a change notification.

Note

This function copies the cached entry frame—not the
original soup entry—into the new soup. O

entry The entry to be copied.
newSoup The soup into which the specified entry is to be copied.
changeSym A unique symbol identifying the application that copied

the entry; usually this value is the application symbol or
some variation on it. Pass ni | for the value of this
parameter to avoid transmitting a soup change
notification.

EntryMoveXmit

Ent r yMoveXm t (entry, newSoup, changeSym)

Moves the specified entry into the specified soup and transmits a soup
change notification message. This function copies the cached entry into the
new soup, verifies the integrity of the duplicate entry, and deletes the
original soup entry. This function’s return value is unspecified.

entry The soup entry to be moved.

newSoup The soup into which the specified entry is to be moved.

Data Storage Functions and Methods 9-67

9-68

CHAPTER 9

Data Storage and Retrieval Reference

changeSym

EntryReplaceXmit

A unique symbol identifying the application that
moved the entry; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

Ent r yRepl aceXni t (original, replacement, changeSym)

Replaces the contents of the original soup entry with the replacement entry
and transmits a soup change notification. This function’s return value is

unspecified.

original

replacement

changeSym

The soup entry to be replaced. This value must be a
soup entry, not a normal frame.

The soup entry to be added. This value can be an entry
or a normal frame. In the latter case, this function makes
the frame into a soup entry and adds the new entry to
the soup.

A unique symbol identifying the application that
replaced the entry; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

EntryRemoveFromSoupXmit

Ent r yRenoveFr omSoupXmi t (entry, changeSym)

Removes entry from its soup and transmits a soup change notification. The
entry frame is converted to a plain frame (unmarked as belonging to a soup).
The return value of this function is unspecified.

entry

changeSym

The soup entry to be removed and converted to a plain
frame.

A unique symbol identifying the application that
removed the entry; usually this value is the application

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

EntrySize

EntrySi ze(entry)

Returns the number of bytes that entry occupies on the store. Note that
entries are compressed when resident on a store, and decompressed
automatically when they are read into the NewtonScript heap.

entry The soup entry on which this function operates.

EntrySoup

Ent r ySoup(entry)
Returns a reference to the soup in which entry resides.

entry The soup entry on which this function operates.

EntryStore

Ent r ySt or e(entry)
Returns a reference to the store on which entry resides.

entry The soup entry on which this function operates.

EntryTextSize

Ent ryText Si ze(entry)
Returns the number of bytes of entry that are occupied by text.

entry The soup entry on which this function operates.

FrameDirty

FrameDi rt y(frameOrEntry)

Returns t r ue if the specified frame in memory has been modified since it
was retrieved from its soup; otherwise, returns ni | . Although this function

Data Storage Functions and Methods 9-69

CHAPTER 9

Data Storage and Retrieval Reference

detects changes to nested frames, it does not discern changes to bytes within
binary objects. Because strings are implemented as binary objects, this
function does not detect changes to individual characters in a string.

frameOrEntry The frame or soup entry to be tested.

The Fr aneDi rt y function may not detect changes caused by editing string
data in cl Par agr aphVi ewviews because these views manipulate
characters within strings as much as possible in lieu of creating new strings.
The following code fragment demonstrates this problem in the NTK
Inspector:

s := CetStores()[0]: Creat eSoup(" Test: Newt onDTS", []);
e := s:Add({slot: 'value, string: "A test entry",
nested: {slot: 'notherValue}})
#4410B69 {slot: val ue,

String: "A test entry",

nested: {slot: notherVal ue},

_uni quel D. 0}
/1 the unnodified entry tests clean
FrameDirty(e)

#2 NI L
/1 Mdify the string without changing its reference
e.string[0] := $a;

/1 FrameDirty doesn’t detect in-place changes to binaries
FrameDirty(e)
#2 NI L

/1 writing the cached entry marks it as unchanged

Ent ryChange(e);

/1 change the string reference

e.string := "A new string";

/1 FrameDirty detects this kind of change successfully
FrameDirty(e)

#1A TRUE

9-70 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

/1 FraneDirty al so detects nested changes successfully
Ent ryChange(e) ;

e.nested. sl ot : = 'newVal ue;

FrameDirty(e)

#1A TRUE

/'l cl eanup
s: RenoveFr ontt or e()

EntryModTime

Ent r yModTi me(entry)

Returns the time when the specified entry was last modified. The time is
expressed as an integer that is the number of minutes passed since midnight,
January 1, 1904. This function gets this information directly from the soup,
which is faster than referencing the entry; the latter approach would require
that the entire entry frame be constructed.

entry The soup entry on which this function operates.

EntryChangeWithModTimeXmit
Ent r yChangeW t hMbdTi meXmi t (entry, changeSym)

Writes a cached entry back to its soup using the modification time you
specify, and transmits a soup change notification. This function’s return
value is unspecified. This special-purpose function is intended for use by
backup /restore applications only; most applications need not use it.

entry The cached entry this method writes back to its soup.

changeSym A unique symbol identifying the application that
changed the entry; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

Data Storage Functions and Methods 9-71

9-72

CHAPTER 9

Data Storage and Retrieval Reference

EntryReplaceWithModTimeXmit

Ent r yRepl aceW t hModTi neXnmi t (original, replacement, changeSym)

Replaces the original entry with the replacement entry, sets the modification
time of the replacement entry to match that of the original entry, and transmits
a soup change notification. This function’s return value is unspecified.

This special-purpose method is intended for use by backup /restore
applications only; most applications need not use it.

original The soup entry to be replaced. This value must be an
entry, not a normal frame.

replacement The soup entry to be added. This value can be an entry
or a normal frame. In the latter case, this function makes
the frame into a soup entry and adds the new entry to
the soup.

changeSym A unique symbol identifying the application that
replaced the entry; usually this value is the application
symbol or some variation on it. Pass ni | for the value
of this parameter to avoid transmitting a soup change
notification.

EntryUniquelD

Ent r yUni quel D(entry)

Returns the value that identifies the specified entry to the system. This
function gets this information without reading the entry into the cache.

Entry Alias Functions

An entry alias is an object that provides a standard way to save a reference
to a soup entry. A soup entry cannot save a reference to an entry that resides
in another soup, but entry aliases themselves may be stored in soups.

The functions described here allow you to work with entry aliases.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

MakeEntryAlias
MakeEnt r yAl i as(entry)

Returns an entry alias object representing the specified soup entry. This
object can be saved in a soup and later used as input to the
Resol veEnt ryAl i as function to retrieve the soup entry.

entry The soup entry to which this method creates a reference.

ResolveEntryAlias

Resol veEnt r yAl i as(alias)

Returns the soup entry referenced by the specified alias. Returns ni | if the
entry cannot be retrieved—typically because the original store, the original
soup, or the original entry is not found.

alias The alias for which this method retrieves the
corresponding soup entry.

IsEntryAlias

I sEnt ryAl i as(object)
Returns true if the specified object is an entry alias.

object The object to be tested.

IsSameEntry

| sSanmeEnt r y(entryOraliasl, entryOralias2)

This method returns the value t r ue only if its arguments evaluate to the
same soup entry. Passing two distinct entries with identical content to this
function does not cause it to return the value t r ue. This method can
compare soup entries, entry aliases, or combinations of the two.

entryOraliasl The soup entry or entry alias to be compared to the
value of the entryOralias2 parameter.

entryOralias2 The soup entry or entry alias to be compared to the
value of the entryOraliasl parameter.

Data Storage Functions and Methods 9-73

9-74

CHAPTER 9

Data Storage and Retrieval Reference

VBO Functions and Methods

A virtual binary object or VBO is a special kind of object used to hold
binary data larger than the available space in the NewtonScript heap. For
more information, see “Virtual Binary Objects” (page 12-2) in Newton
Programmer’s Guide.

In addition to the functions described in this section, VBOs support all
standard object system functions such as Cl assCOf , Set O ass, Lengt h,
Set Lengt h, Cl one, Bi nar yMunger, and so on. VBO data is not persistent
until the VBO is put in a soup entry and the entry is written to a soup.

IMPORTANT

Store memory for VBO data is not allocated until the VBO is
written to a soup. It is strongly recommended that you
enclose in a t ry block any code that writes VBO data. For
more information, see “Using Virtual Binary Objects”

(page 12-8) in Newton Programmer’s Guide. a

NewVBO

store: NewVB(class, size)

Creates on the specified store a virtual binary object of the specified class
large enough to store the specified number of bytes. This function returns a
reference to the object it creates.

IMPORTANT

Store memory for VBO data is not allocated when the VBO is
created—it is allocated when the VBO is written to a soup.
For more information, see “Using Virtual Binary Objects”
(page 12-8) in Newton Programmer’s Guide. a

class A symbol specifying the class of the virtual binary
object this method creates.

size The initial size of the VBO, expressed in bytes.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

NewCompressedVBO

store: NewConpr essedVB(Q class, size, companderName, companderArgs)

Creates on the specified store a virtual binary object large enough to store the
specified number of bytes. This function returns a reference to the object it
creates. Normally, the object returned by this function compresses and
decompresses its associated binary data on demand; however, this method
creates an object that saves binary data in uncompressed form when ni | is
specified as the value of the companderName parameter.

A compander (compressor-expander) is an object that transparently
compresses data as it is stored and expands data as it is read. The compander
specified by the value of the companderName parameter is instantiated using
the values specified by the companderArgs parameter. Because both
companders provided by the current system initialize themselves
automatically, you must always pass ni | as the value of the companderArgs
parameter.

IMPORTANT

Store memory for VBO data is not allocated when the VBO is
created—it is allocated when the VBO is written to a soup.
For more information, see “Using Virtual Binary Objects”
(page 12-8) in Newton Programmer’s Guide. a

class A symbol specifying the class of the binary object that
this method creates.

size The initial size of the VBO, expressed in bytes.

companderName A string value specifying the implementation of the

store compander protocol used when the VBO created
by this object is written to or read from a soup entry. If
the value of this parameter is ni | , an uncompressed
object is created. The following strings are valid values
for this parameter:

"TLZSt or eConpander ™
Specifies the use of the Lempel-Ziv
compressor-expander.

Data Storage Functions and Methods 9-75

9-76

CHAPTER 9

Data Storage and Retrieval Reference

"TPi xel MapConpander "
Specifies the use of a compander
specialized for pixel map data. (A bitmap
is a pixel map having a bit depth of 1.)
This compander assumes that the data in
the VBO is a pixel map and that the pixel
map data is 32-bit aligned; that is, the
length of the rows in the pixel map is an
even multiple of 4 bytes.
For a description of the Newton bitmap
format, see “MakeBitmap” (page 10-19).

companderArgs Arguments for instantiating the specified compander. In
the current implementation, always pass ni | as the
value of this parameter.

IsVBO

I sVBQ(vho)

Returns a non-ni | value if the object to be tested is a virtual binary object;
otherwise, returns ni | .

vho The object to be tested.

GetVBOStore

Get VBOSt or e(vho)

Returns the store object on which the specified virtual binary object resides.
This function returns ni | if its argument is not a VBO.

vho The virtual binary object to be tested.

Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

GetVBOStoredSize
Get VBOSt or edSi ze(vho)

Returns the number of bytes the specified VBO actually uses in the store; for
example, if the VBO is compressed, this function returns its compressed size.

vho The VBO to be tested. Do not use objects other than
VBOs as the value of this parameter.

GetVBOCompander
Get VBOConpander (vho)

Return the name of the compander used for the specified object. If the object
is not a VBO, this function returns an unspecified value.

vho The VBO to be tested.

Mock Entry Functions

A mock entry is a NewtonScript object that mimics the behavior of a soup
entry. The mock entry is a foundation object you can use to build up a suite
of objects that acts like the system-supplied store, soup, cursor, and entry
objects. For example, you could create a mock entry object that uses a serial
communications link to retrieve a record from a remote database; additional
objects could implement methods to provide cursor-like access to these mock
entries, just as if they resided in a local soup.

The current implementation of the Newton object system provides only
mock entries; you must implement appropriate mock cursors, mock soups,
and mock stores as required.

For more information, see “Mock Entries” (page 12-4) in Newton
Programmer’s Guide.

The global functions described here create and manipulate mock entries.
They do not work on normal soup entries.

See also Chapter 23, “Utility Functions Reference,” for a description of the
NewMéakAr r ay function.

Data Storage Functions and Methods 9-77

CHAPTER 9

Data Storage and Retrieval Reference

NewMockEntry

NewMockEnt r y(handler, cachedFrame)
Creates a new mock entry having the specified handler and cached frame.
handler The frame implementing this mock entry’s methods.

cachedFrame The frame containing the mock entry’s data. You can
pass ni | for this value and fill in the entry data later
from the Ent r yAccess method of this mock entry’s
handler frame.

IsMockEntry

| sMockEnt r y(object)

Returns a non-ni | value if the specified object is a mock entry; otherwise,
returns ni | . This function returns the value ni | when the object to be tested
is a normal soup entry; in contrast, the | sSoupEnt r y function returns t r ue
for mock entries and for normal soup entries.

object The object to be tested.

EntrySetCachedObject

Ent r ySet CachedQbj ect (mockEntry, newCachedFrame)

Installs the specified cached frame in the specified mock entry. The cached
frame is the frame that holds the mock entry’s data— the system forwards
accesses of the specified mock entry to this frame transparently.

mockEntry The mock entry object for which the newCachedFrame
frame is to be entry data. If the value of this parameter
is not a mock entry (as created by the NewVbckEnt ry
function), an error is signalled.

newCachedFrame The frame to be installed as the entry data for the
specified mock entry.

9-78 Data Storage Functions and Methods

CHAPTER 9

Data Storage and Retrieval Reference

EntryCachedObject
Ent r yCachedObj ect (mockEntry)

Returns the specified mock entry’s cached frame.

EntrySetHandler

Ent r ySet Handl er (mockEntry, newHandler)

Installs the specified frame as the handler for the specified mock entry.

mockEntry The mock entry in which the newHandler frame is
installed.
newHandler The handler frame to install in the mockEntry object.

EntryHandler

Ent r yHand!| er (mockEntry)

Returns the specified mock entry’s handler frame. This special-purpose
method is intended for debugging purposes only.

mockEntry The mock entry object to be tested.

Developer-Defined Entry Handler Methods

You must implement the methods described here in order to use mock
entries.

EntryAccess

handler: Ent r yAccess(mockEntry)

You supply this method, which is called when the frame system needs to
access a slot in a mock entry and the mock entry’s cached frame is not
present. This method must create a frame representing the entry and use the
Ent r ySet CachedObj ect function to assign that frame to the mockEntry
object.

handler The handler frame for the specified mock entry.

Data Storage Functions and Methods 9-79

CHAPTER 9

Data Storage and Retrieval Reference

mockEntry The mock entry being accessed. Do not rely on this

value—it is not always passed.

Optional Developer-Defined Entry Handler Methods

Your mock entry handler should also implement the following methods as
necessary. These methods are the mock entry counterparts to
system-supplied entry functions.

handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:
handler:

Ent r ySoup(mockEntry)

Ent r ySt or e(mockEntry)

Ent r ySi ze(mockEntry)

Ent r yText Si ze(mockEntry)

Ent r yUni quel D(mockEntry)

Ent r yModTi me(mockEntry)

Ent r yChange(mockEntry)

Ent r yChangeW t hModTi e (mockEntry)
Ent r yRenmoveFr onSoup(mockEntry)

Ent r yRepl ace(original, replacement)
Ent r yRepl aceW t hModTi ne(original, replacement)
Ent r yUndoChanges(mockEntry)

Ent r yCopy (mockEntry, newSoup)

Ent r yMove(mockEntry, newSoup)

Ent ryVal i d(mockEntry)

9-80 Data Storage Functions and Methods

CHAPTETR 10

Drawing and Graphics
Reference

This chapter describes the protos, functions, and methods used by the
drawing interface.

Data Structure

The Drawing interface uses the following structure.

Style Frame

The style frame is used to specify characteristics that affect the way the shape
is imaged, such as the size of the pen or the fill pattern to be used. These
characteristics are specified by the values of slots in a style frame associated
with the shape. If the value of the style frame is ni | , the view system draws
the shape using default values for these drawing characteristics.

Data Structure 10-1

CHAPTER 10

Drawing and Graphics Reference

Slot descriptions

The style frame contains one or more of the slots listed here. If any single slot
is not provided, the default value for that slot is used.

transferMde The drawing transfer mode for the pen (or for the text, if
text is being drawn). Specify one of these standard
constants: nodeCopy, nodeOr, nodeXor, nodeBi c,
nodeNot Copy, nodeNot O, nodeNot Xor,
nodeNot Bi c. See “viewTransferMode Constants”
(page 2-13) for a description of these constants. The
default transfer mode is a split state: bitmaps and text
are drawn with a nodeOr transfer mode, but other
items (geometric shapes, pens, and fill patterns) are
drawn with a nrodeCopy transfer mode. However,
when you actually specify a transfer mode (by placing a
non-ni | value in the t r ansf er Mode slot of the style
frame), all drawing uses the specified mode.

penSi ze The size of the pen in pixels. You can specify a single
integer to indicate a square pen of the specified size, or
you can specify an array giving the pen width and
height (for example, [1, 2]). This value is not used for
drawing text. The minimum and default pen size is 1.
However, no frame will be drawn for a shape if
penPat t er n is set to vf None (the default
penPat t er n is vf Bl ack).

penPattern The pen pattern. You can specify the following patterns:
vf None, vf Wi t e, vf Lt G- ay, vf Gr ay, vf DKGr ay, and
vf Bl ack. The default value is vf Bl ack.

To use a custom pen pattern, store a binary object of
class ' pat t er n in this slot. An easy way to create such
an object is to clone a binary string containing 16
Unicode hexadecimal digits, set the class of the clone to
' pat t er n and store the result in this slot. For more
information, see “Custom Fill and Frame Patterns”
(page 3-21) in the Newton Programmer’s Guide.

10-2 Data Structure

CHAPTER 10

Drawing and Graphics Reference

fillPattern

f ont

justification

cli ppi ng

transform

View Classes

The fill pattern. You can specify the same patterns as for
the penPat t er n slot. This value is not used for
drawing text. The default value is vf None.

To use a custom fill pattern, store a binary object of class
' pat t er n in this slot. For more information, see
“Custom Fill and Frame Patterns” (page 3-21) in the
Newton Programmer’s Guide.

The font to use for drawing text. The default is the font
selected by the user in the Styles palette. See “Fonts for
Text and Ink Display” (page 8-3) in Newton Programmer’s
Guide for details on specifying a font.

The alignment of text in the rectangle specified for it.
Specify one of the following symbols: 'l eft,' ri ght,
' cent er. The default valueis' | ef t.

Specifies a clipping region to which all drawing is
clipped in addition to the default clipping. The value of
this slot can be a primitive shape, a region, or an array
of shapes (from which a new clipping region is
constructed automatically by the system). For more
information see “Controlling Clipping” (page 13-12) in
the Newton Programmer’s Guide.

Used to offset or scale the shape. The value of this slot is
an array that can hold a coordinate pair or a pair of
source and destination rectangles. For more
information, see “Transforming a Shape” (page 13-13) in
the Newton Programmer’s Guide.

The following view classes are used to display objects in views.

View Classes

10-3

10-4

CHAPTER 10

Drawing and Graphics Reference

Shape View (clPolygonView)

Displays polygons or ink, or accepts graphic or ink input.

Slot descriptions
vi ewBounds

poi nt's

i nk

vi ewFl ags

vi ewFor mat

Set to the size of the view and the view location where
you want it to appear.

If the view contains a polygon shape, this slot contains a
binary data structure of the type ' pol ygonShape,
which holds the polygon data.

If the view contains ink, this slot contains a binary data
structure of the type ' i nk, which holds the ink data.

The default setting is vVi si bl e. You will most likely
want to set additional flags to control the recognition
behavior of the view; for example, vShapesAl | owed.
Optional. The default setting is vf Pen(2) . The vf Pen
setting controls the thickness of polygon lines.

Picture View (clPictureView)

Displays a picture. A picture can be a bitmap, graphic shape, or picture object.

Slot descriptions
i con

vi ewBounds

vi ewFl ags
vi ewfFor mat

Abitmap, graphic shape, or picture object to be
displayed in the view. A bitmap is selected from a
resource file by using the icon slot editor in NTK. A
picture object is obtained from a resource file by using
the Get Resour ce or Get NanedResour ce
compile-time functions in NTK.

Set to the size of the view and the location where you
want it to appear.

The default setting is vVi si bl e.
Optional. The default setting is ni | .

A picture object is simply a binary object with the class ' pi ct ure.

View Classes

CHAPTER 10

Drawing and Graphics Reference

If the contents of the i con slot is a graphic shape, the style frame for
drawing the shape in the view contains the single slott r ansf er Mode. The

t ransf er Mode slot is set to the same value as the vi ewTr ansf er Mode slot
of the view (if this slot exists), or to the default value nodeCopy if there is no
vi ewTr ansf er Mode slot in the view.

Your graphic shape can provide a different set of styles by including a
style frame in the shape array. In this case, any t r ansf er Mode slot in

the style frame that you specify overrides the vi ewTr ansf er Mode setting
for the view.

Scaled View (clRemoteView)

Displays a scaled image of another view.

Slot descriptions

stepChil dren Specify a single child view in this array. This child view
is scaled to fit inside the c| Renpt eVi ew Typically, you
set this slot at run time in the Vi ewSet upFor nScri pt

method.

vi ewBounds Set to the size of the view and the location where it is to
appear.

vi ewFl ags The default setting isni | .

vi ewFor mat Optional. The default setting is ni | .

Graphics and Drawing Protos

This section describes the protos that work with graphics and drawing. The
protos include:

= protol mageVi ew
= protoThunbnail
= protoThurbnai | Fl oat er

Graphics and Drawing Protos 10-5

CHAPTER 10

Drawing and Graphics Reference

protolmageView

This proto provides a view in which you can display, magnify, scroll, and
annotate images. However, it depends on the use of pr ot oThunbnai | and
pr ot oThunbnai | Fl oat er to provide controls for magnifying, scrolling,
and paging. The structure of the pr ot ol mageVi ewis shown in Figure 10-1.

Figure 10-1 pr ot ol mageVi ew Structure

10-6

Transparent
COYEFng

[rrage pane /h///;

The annotations can be selected and modified when the image is shown at
full size. The image and annotations are clipped so that only the portion of
their contents that falls within the bounds of their parent view is shown.
Annotations scroll along with the image.

In general, in this discussion, a reference to the “image” means both the
image and the annotation, while the “image plane” refers only to the image.
Also, references to the “pane” refer to the bounding box of the

pr ot ol mageVi ew under the assumption that the image is larger than can
be displayed in the box, so the pr ot ol nageVi ewis a window, or pane, into
the larger image. Finally, scaling frequently refers to both size and position of
the pane in the image.

Slot descriptions
You may provide the following slots:

| mage This slot should contain a NewtonScript shape. It will
be rendered by the image plane and can be provided
either by proto or parent inheritance. This slot is

Graphics and Drawing Protos

CHAPTER 10

Drawing and Graphics Reference

Annot ati ons

scal i nglnfo

required if the image viewer is not opened with
Openl mage or Toggl el nage.

This slot should either be ni |, or should contain an
array of views appropriate to be added as

vi ewChi | dren to acl Edi t Vi ew This slot can be
provided either by proto or parent inheritance.

Note

Annot at i ons is referenced during view setup (see
Set up (page 10-9) for details) and is not maintained
afterwards; to retrieve user annotations, call the

Get Annot at i ons method. O

This slot should either be ni | or should contain a slot
similar to that returned by Get Scal i ngl nf o

(page 10-11). The scal i ngl nf o slot can be provided by
either proto or parent inheritance.

You can override the following slots:

vi ewBounds
vi ewJustify

vi ewFl ags
Vi ewFor rmat
zoontt ops

The defaultis{t op: 88, left: 0, right: O,
bottom -24}.

The default setting is vj Par ent Ful | H +
vj Parent Ful | V.

The default setting isvf Lt Gray + viFill Shift.
The default setting is vf Pen(1) .

An array specifying an ordered set of zoom stops,
smallest to largest, used by the ZoonBy method. If this
slot is not provided, it is initialized to the default set.
Each item in the set should be either a number or a
symbol. If a number, zoonBt ops specifies the fractional
size to be displayed, where 1.0 is the size of the original
image based on the resolution. If zoonSt ops is a
symbol it may be' fit| nWndow ' full Si ze,

"ful |l Resol ution,or'tw ceFul | Resol ution. The
minimal default setis[' ful | Si ze,

"tw ceFul | Resol uti on].The symbol"' ful | Si ze
should always be a member of the array.

Graphics and Drawing Protos 10-7

10-8

CHAPTER 10

Drawing and Graphics Reference

dragCorri dor An integer. When dragging the image, clinging to the
closest axis when within a specific corridor smooths
linear scrolling considerably. The dr agCor r i dor slot
specifies the distance from the closest axis the user must
move the pen to break out of that corridor and scroll
diagonally. The default value is 7 (resulting in a 14-pixel
corridor along both axes).

gr abbyHand When appropriate, a picture is painted under the pen
while pendown is executing to indicate that the image
can be dragged. The gr abbyHand slot contains the
appropriate shape to render. It should have t op- | ef t
= 0, 0. The picture is automatically centered under
the pen.
Note

This slot can only be generated dynamically and must
be generated before Vi ewSet upDone is called. O

Do not change the following slot:

decl ar eSel f This slot is set by default to ' i magebase. Do not
change it.

The following additional slots and methods are used internally. They are
listed here so that you don’t inadvertently override them.

System slots:
vi ewC ass, declareSelf, and Vi ewSetupDoneScri pt

Additional slots:

nyl mage, tenplnmage, tenpAnnotes, tenpScal es, tenpOpen,
fXOffset, fYOfset, fMaxX, fMaxY, cHorMiult, cVertMilt,
f Annot at eMbde, handShape, useful Sizes, currentSize,
full Size, fZoonedTo, quiet, Calcul ateUseful Si zes,

Set upZoontt ops, SetupSi zes, ZoonmByDest, DoUndo.

The following sections describe the methods of pr ot ol mageVi ewthat you
may need to use.

Graphics and Drawing Protos

CHAPTER 10

Drawing and Graphics Reference

PenDown

mylmageView:PenDown(strokeUnit)
Used to drag an image.

Called by the image view’s Vi ewd i ckScri pt to handle taps (except when
in' edi t mode, see “SetAnnotationMode” (page 10-12). The default script
drags the image. You can override the default to handle the click. Keep in
mind that it is not possible to override Vi ewd i ckScri pt as

pr ot ol mageVi ewis composed of multiple views, any one of which can be
handling the tap.

strokeUnit Unit from the Vi ewd i ckScri pt method; contains
information describing the interaction of the pen with
the display.

ScalinginfoChanged

mylmageView:Scal i ngl nf oChanged(slot)

Called whenever a frame returned by Get Scal i ngl nf o would change due
to some programmatic action; for example, a call to ZoonTTo, Scr ol | By, and
SO on.

slot Value varies depending on the event causing the
Get Scal i ngl nf o call:
‘zoom The magnification of the image changed.
"scroll The image was scrolled.

" draggi ng The image is being dragged by the pen.
" dragDone The image is finished being dragged by
the pen.

Setup

mylmageView:Set up(image, annotations, scalinginfo)

Performs appropriate initialization to display the specified image. This
method is typically used after the view is opened to let another image be
displayed (for example, when switching pages in a fax). (Note that the
Vi ewSet upDoneScr i pt method calls Set up automatically.)

Graphics and Drawing Protos 10-9

10-10

CHAPTER 10

Drawing and Graphics Reference

image Contains a NewtonScript shape which is rendered by
the image plane.

annotations Is either ni | or contains an array of views appropriate
toadd asvi ewChi Il drentoacl Edi t Vi ew

scalinglnfo If specified, scalingInfo sets the image to the appropriate
magnification and offset.

Note

You can define your own Set up method; however, you
must then call the inherited method
(i nherited: Setup();) from your own method. O

Openimage

mylmageView:Openl nage(image, annotations, scalinglnfo)

Opens and initializes the view displaying the image, annotations, and
whatever scaling it was set to. If scalingInfo is ni | , the image size does not
change; however the annotation may change. Otherwise, the image sets the
scaling according to the specified scaling information. If the image is already
open the imagery, annotations, and scaling (if specified) are set.

image Contains a NewtonScript shape which is rendered by
the image plane.

annotations Is either ni | or contains an array of views appropriate
toadd asvi ewChi | drentoacl Edi t Vi ew

scalinglnfo If specified, scalingInfo sets the image to the appropriate
magnification and offset.

Togglelmage

mylmageView:Toggl el mage(image, annotations, scalinglnfo)

Opens or closes the view and sets the image, annotations, and scaling
information (if specified). If scalingInfo is ni | , the image size does not
change. If the image is already open, the image, annotations, and scaling
information are set.

Graphics and Drawing Protos

CHAPTER 10

Drawing and Graphics Reference

image Contains a NewtonScript shape which is rendered by
the image plane.

annotations Is either ni | or contains an array of views appropriate
toadd asvi ewChi l drentoacl Edi t Vi ew

scalinglnfo If specified, scalingInfo sets the image to the appropriate
magnification and offset.

GetScalingInfo

mylmageView:Get Scal i ngl nf o()

Returns a frame of scaling information. The returned frame has the following
slots:

of f set X The horizontal offset of the pane within the image
(positive).

of fsetY The vertical offset of the pane within the image
(positive).

zoonedTo The symbol or number representing the current zoom.

ext ent The bounding box of the image at the current scale.

vi ewBox The (localbox) bounding box of the pane (never
changes).

HasAnnotations

mylmageView:HasAnnot at i ons()

Returns non-ni | if the displayed image has annotations, ni | otherwise.

GetAnnotations

mylmageView:CGet Annot at i ons()

Returns an array of views appropriate to become cl Edi t Vi ew children.
This array represents the current annotations drawn on the cl Edi t Vi ew
annotation layer.

Graphics and Drawing Protos 10-11

10-12

CHAPTER 10

Drawing and Graphics Reference

SetAnnotationMode

mylmageView:Set Annot at i onMbde(theMode)

Sets the annotation display behavior and the pen behavior when it is tapped.

theMode Specifies the mode as follows:
" hi de Annotations are not visible and a pen tap
results in a drag.
' show Annotations are made visible, and a pen
tap drags.
"edit Annotations are visible and editable.

Note

Due to system limitations, it is not possible to edit
annotations at any magnification other than ' ful | Si ze. If
you attempt to Set Annot at i onMbde(' edi t) while at any
other magnification, an exception is thrown. O

GetAnnotationMode

mylmageView:Get Annot at i onMode()

Returns the symbol representing the current annotation mode.

TargetChanged

mylmageView:Tar get Changed()

Called when any annotation is added or edited.

CanScroll

mylmageView:CanScrol | ()

Returns a frame indicating the direction (' | eft, "' ri ght,' up, and ' down)
in which scrolling is possible. If scrolling is not possible ni | is returned.

Graphics and Drawing Protos

CHAPTER 10

Drawing and Graphics Reference

ScrollTO

mylmageView:Scr ol | To(x, Y)

Scrolls the scaled image within the clipping window. This method returns a
non-ni | value if the image was moved or ni | if it was not moved (either it
was already there, or doing so would have moved the pane past the edge of
the image). Scr ol | To does not scroll the image away from the edge of the
view.

X,y The offset of the top-left corner of the pane from the top
left corner of the image.

Note

Zooming the image changes the size (and content) of the
image window, but doesn’t change the scrolling behavior. O

ScrollBy

mylmageView:Scr ol | By(x, V)

Scrolls the image by the specified offset amount, where deltaX and deltaY
indicate how far to move the pane within the image. This method returns a
non-ni | value if the image was moved or ni | if it was not moved.

Scr ol | By does not scroll the image away from the edge of the view.

X The horizontal distance in which to scroll the image.
y The vertical distance in which to scroll the image.
ZoomBy

mylmageView:ZoonBy (direction)

Makes an image larger or smaller as specified by the sizes in the zoont ops
array. If the current zoom is a number between a pair of stops, the image
increases to the nearest stop in the direction specified (where a positive
number enlarges the image; a negative number shrinks the image).

The following example shows the use of zoonst ops:

['fitlnWndow, 0.24, 0.5, 'fullSize, 2, 4,
"full Resol ution, 'tw ceFull Resol ution]

Graphics and Drawing Protos 10-13

10-14

CHAPTER 10

Drawing and Graphics Reference

The current zoom is 0.35, ZoonBy (1) increases the image by 0.5 (that is, half
size), ZoonBy (2) makes the image ' f ul | Si ze, and so on. ZoonBy returns
non-ni | if the zooming was changed.

direction A number of discrete steps by which to zoom the image.

ZoomTo

mylmageView:ZoonTo(imageSize)
Changes the size of the image.

imageSize An positive number or symbol as described in the
scal i ngl nf o slot on (page 10-7).

CanZoomBy

mylmageView:CanZoonBy (imageSize)

Returns ni | if ZoonBy would change the size of the image. Returns non-ni |
otherwise.

imageSize A number of discrete steps by which to zoom the image.

ZoomToBox

mylmageView:ZoonToBox (boundsFrame)

Resizes the image to the size specified with the boundsFrame parameter. Note
that you don’t need to specify the same aspect ratio as the original image;
this method allows you to stretch the image in either dimension.

boundsFrame Specifies the size to which you want the image to resize.

protoThumbnail

This proto is designed to be used in conjunction with pr ot ol nageVi ew It
displays a small cop